Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 4(1): 237-252, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38274252

ABSTRACT

Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.

2.
JACS Au ; 3(7): 1939-1951, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502165

ABSTRACT

Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.

3.
J Am Chem Soc ; 144(30): 13511-13525, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35861681

ABSTRACT

Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.


Subject(s)
Electronics , Platinum , Anisotropy , Magnetic Resonance Spectroscopy/methods
4.
J Am Chem Soc ; 144(29): 13384-13393, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35834364

ABSTRACT

The increasing demand for short chain olefins like propene for plastics production and the availability of shale gas make the development of highly performing propane dehydrogenation (PDH) catalysts, robust toward industrially applied harsh regeneration conditions, a highly important field of research. A combination of surface organometallic chemistry and thermolytic molecular precursor approach was used to prepare a nanometric, bimetallic Pt-Mn material (3 wt % Pt, 1.3 wt % Mn) supported on silica via consecutive grafting of a Mn and Pt precursor on surface OH groups present on the support surface, followed by a treatment under a H2 flow at high temperature. The material exhibits a 70% fraction of the overall Mn as MnII single sites on the support surface; the remaining Mn is incorporated in segregated Pt2Mn nanoparticles. The material shows great performance in PDH reaction with a low deactivation rate. In particular, it shows outstanding robustness during repeated regeneration cycles, with conversion and selectivity stabilizing at ca. 37 and 98%, respectively. Notably, a material with a lower Pt loading of only 0.05 wt % shows an outstanding catalytic performance─initial productivity of 4523 gC3H6/gPt h and an extremely low kd of 0.003 h-1 under a partial pressure of H2, which are among the highest reported productivities. A combined in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, electron paramagnetic resonance, and metadynamics at the density functional theory level study could show that the strong interaction between the MnII-decorated support and the unexpectedly segregated Pt2Mn particles is most likely responsible for the outstanding performance of the investigated materials.

5.
Chem Soc Rev ; 50(9): 5806-5822, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33972978

ABSTRACT

The selective conversion of light alkanes (C2-C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts.

6.
J Am Chem Soc ; 142(44): 18936-18945, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33090798

ABSTRACT

The molecular level characterization of heterogeneous catalysts is challenging due to the low concentration of surface sites and the lack of techniques that can selectively probe the surface of a heterogeneous material. Here, we report the joint application of room temperature proton-detected NMR spectroscopy under fast magic angle spinning (MAS) and dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP-SENS), to obtain the 195Pt solid-state NMR spectra of a prototypical example of highly dispersed Pt sites (single site or single atom), here prepared via surface organometallic chemistry, by grafting [(COD)Pt(OSi(OtBu)3)2] (1, COD = 1,5-cyclooctadiene) on partially dehydroxylated silica (1@SiO2). Compound 1@SiO2 has a Pt loading of 3.7 wt %, a surface area of 200 m2/g, and a surface Pt density of around 0.6 Pt site/nm2. Fast MAS 1H{195Pt} dipolar-HMQC and S-REDOR experiments were implemented on both the molecular precursor 1 and on the surface complex 1@SiO2, providing access to 195Pt isotropic shifts and Pt-H distances, respectively. For 1@SiO2, the measured isotropic shift and width of the shift distribution constrain fits of the static wide-line DNP-enhanced 195Pt spectrum, allowing the 195Pt chemical shift tensor parameters to be determined. Overall the NMR data provide evidence for a well-defined, single-site structure of the isolated Pt sites.

7.
Chem Sci ; 11(6): 1549-1555, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-34084386

ABSTRACT

The development of highly productive, selective and stable propane dehydrogenation catalysts for propene production is strategic due to the increasing need for propene and the availability of shale gas, an abundant source of light alkanes. In that context, the combination of surface organometallic chemistry (SOMC) and a thermolytic molecular precursor (TMP) approach is used to prepare bimetallic subnanometric and narrowly distributed Pt-Zn alloyed particles supported on silica via grafting of a Pt precursor on surface OH groups present in a Zn single-site containing material followed by a H2 reduction treatment. This material, that exhibits a Zn to Pt molar ratio of 3 : 2 in the form of alloyed Pt-Zn particles with a 0.2 to 0.4 fraction of the overall Zn amount remaining as ZnII sites on the silica surface, catalyzes propane dehydrogenation (PDH) with high productivity (703 gC3H6 gPt -1 h-1 to 375 gC3H6 gPt -1 h-1) and very low deactivation rates (k d = 0.027 h-1) over 30 h at high WHSV (75 h-1). This study demonstrates how SOMC can provide access to highly efficient and tailored catalysts through the stepwise introduction of specific elements via grafting to generate small, homogeneously and narrowly distributed supported alloyed nanoparticles at controlled interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...