Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Engine Res ; 24(5): 1892-1915, 2023 May.
Article in English | MEDLINE | ID: mdl-37096028

ABSTRACT

Gaseous fuels for heavy-duty internal combustion engines provide inherent advantages for reducing CO2, particulate matter (PM), and NOX emissions. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a late-cycle main direct injection of NG, resulting in significant reduction of unburned CH4 emissions relative to port-injected NG. Previous works have identified NG premixing as a critical parameter establishing indicated efficiency and emissions performance. To this end, a recent experimental investigation using a metal engine identified six general regimes of PIDING heat release and emissions behavior arising from variation of NG stratification through control of relative injection timing (RIT) of the NG with respect to the pilot diesel. The objective of the current work is to provide comprehensive description of in-cylinder fuel mixing of direct injected gaseous fuel and its impacts on combustion and pollutant formation processes for stratified PIDING combustion. In-cylinder imaging of OH*-chemiluminescence (OH*-CL) and PM (700 nm), and measurement of local concentration of fuel is considered for 11 different RIT , representing 5 regimes of stratified PIDING combustion (performed with P inj = 22 . 0 MPa and ϕ = 0 . 63 ). The magnitude and cyclic variability of premixed fuel concentration near the bowl wall provides direct experimental validation of thermodynamic metrics ( RI T premix , SO I NG , trans , RI T * ) that describe the fuel-air mixture state of all 5 regimes of PIDING combustion. The local fuel concentration develops non-monotonically and is a function of RIT. High indicated efficiency and low CH4 emissions previously observed for stratified-premixed PIDING combustion in previous (non-optical) investigations are due to: (i) very rapid reaction zone growth ( > 45 m/s) and (ii) more distributed early reaction zones when overlapping pilot and NG injections cause partial pilot quenching. These results connect and extend the findings of previous investigations and guide the future strategic implementation of NG stratification for improved combustion and emissions performance.

2.
Int J Engine Res ; 24(2): 265-285, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36776418

ABSTRACT

Natural gas (NG) is an attractive fuel for heavy-duty internal combustion engines because of its potential for reduced CO2, particulate, and NOX emissions and lower cost of ownership. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a main direct injection of NG. Recent studies have demonstrated that increased NG premixing is a viable strategy to increase PIDING indicated efficiency and further reduce particulate and CO emissions while maintaining low CH4 emissions. However, it is unclear how the combustion strategies relate to one another, or where they fit within the continuum of NG stratification. The objective of this work is to present a systematic evaluation of pilot combustion, NG combustion, and emissions behavior of stratified-premixed PIDING combustion modes that span from fully-premixed to non-premixed conditions. A sweep of the relative injection timing, RIT , of NG and pilot diesel was performed in a heavy-duty PIDING engine with P inj = 140-220 bar, ϕ g = 0.47-0.71, and a constant NG energy fraction of 94%. Apparent heat release rate and emissions analyses identified interactions between the pilot fuel and NG, and qualitatively characterized the impact of NG stratification on combustion and emissions. Changes in the RIT resulted in six distinct PIDING combustion regimes, for all considered injection pressures and equivalence ratios: (i) RIT-insensitive premixed, (ii) stratified-premixed (early-cycle injection), (iii) NG jet impingement transition, (iv) stratified-premixed (late-cycle injection), (v) variable premixed fraction, and (vi) minimally-premixed. Parametric definitions for the bounds of each regime of combustion were valid for the wide range of P inj and ϕ g investigated, and are expected to be relevant for other PIDING engines, as previously identified regimes agree with those identified here. This conceptual framework encompasses and validates the findings of previous stratified PIDING investigations, including optimal ranges of operation that provide significantly increased efficiency and lower emissions of incomplete combustion products.

SELECTION OF CITATIONS
SEARCH DETAIL
...