Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746173

ABSTRACT

Current techniques to image the microstructure of the heart with diffusion tensor MRI (DTI) are highly under-resolved. We present a technique to improve the spatial resolution of cardiac DTI by almost 10-fold and leverage this to measure local gradients in cardiomyocyte alignment or helix angle (HA). We further introduce a phenomapping approach based on voxel-wise hierarchical clustering of these gradients to identify distinct microstructural microenvironments in the heart. Initial development was performed in healthy volunteers (n=8). Thereader, subjects with severe but well-compensated aortic stenosis (AS, n=10) were compared to age-matched controls (CTL, n=10). Radial HA gradient was significantly reduced in AS (8.0±0.8°/mm vs. 10.2±1.8°/mm, p=0.001) but the other HA gradients did not change significantly. Four distinct microstructural clusters could be idenJfied in both the CTL and AS subjects and did not differ significantly in their properties or distribution. Despite marked hypertrophy, our data suggest that the myocardium in well-compensated AS can maintain its microstructural coherence. The described phenomapping approach can be used to characterize microstructural plasticity and perturbation in any organ system and disease.

2.
Front Plant Sci ; 14: 1278320, 2023.
Article in English | MEDLINE | ID: mdl-38023835

ABSTRACT

In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.

3.
Plant Genome ; 16(3): e20350, 2023 09.
Article in English | MEDLINE | ID: mdl-37351954

ABSTRACT

MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Arachis/genetics , Droughts , Heat-Shock Response , RNA, Messenger/metabolism
4.
Heliyon ; 9(3): e14528, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967958

ABSTRACT

Grapevine red blotch virus (GRBV) is the causative agent of grapevine red blotch disease (GRBD) which is one of the major threats faced by grapevine industry in the United States. Since its initial identification in 2011, the disease has rapidly spread in the major US grape-growing regions of the Pacific Northwest, causing major economic impacts. Geminiviruses, the largest family of plant viruses, can induce and be targeted by host post-transcriptional gene-silencing (PTGS) anti-viral mechanisms. As a counter-defense mechanism, viruses have evolved viral silencing suppressor proteins to combat PTGS mechanisms and establish a successful infection in host plants. Here we provide characterization of two ORFs of GRBV, C2 and V2 as viral silencing suppressors. In Nicotiana benthamiana line 16c GFP marker plants, synergism or additive effects of C2 and V2 suppressors was observed at the mRNA level when they are expressed together transiently. Additionally, we showed there is no evidence by yeast two-hybrid of self-interaction (dimerization) of C2 or V2 proteins, and no evidence of physical interaction between these two suppressors.

5.
Biomaterials ; 289: 121782, 2022 10.
Article in English | MEDLINE | ID: mdl-36099713

ABSTRACT

Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.


Subject(s)
Bioprosthesis , Calcinosis , Heart Valve Prosthesis , Acetylcysteine , Animals , Blood Proteins , Cattle , Ethanol/pharmacology , Glutaral , Glycation End Products, Advanced , Pyridoxamine , Rats
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131859

ABSTRACT

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Subject(s)
Heart Valve Diseases/drug therapy , Heart Valve Diseases/therapy , Oxazoles/pharmacology , Pericardium/drug effects , Animals , Biocompatible Materials , Calcification, Physiologic/drug effects , Calcinosis/drug therapy , Calcinosis/metabolism , Calcinosis/therapy , Cell Line , Collagen/metabolism , Ethanol/pharmacology , Glycation End Products, Advanced/metabolism , Heart Valve Diseases/metabolism , Heart Valve Prosthesis , Heterografts/drug effects , Humans , Male , Oxidation-Reduction/drug effects , Pericardium/metabolism , Rats , Rats, Sprague-Dawley , THP-1 Cells
7.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34639939

ABSTRACT

Niobium-based tungsten alloys are desirable for high-temperature structural applications yet are restricted in practice by limited room-temperature ductility and fabricability. Powder bed fusion additive manufacturing is one technology that could be leveraged to process alloys with limited ductility, without the need for pre-alloying. A custom electron beam powder bed fusion machine was used to demonstrate the processability of blended Nb-1Zr, Nb-10W-1Zr-0.1C, and Nb-20W-1Zr-0.1C powders, with resulting solid optical densities of 99+%. Ultimately, post-processing heat treatments were required to increase tungsten diffusion in niobium, as well as to attain satisfactory mechanical properties.

8.
Materials (Basel) ; 14(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072337

ABSTRACT

Mechanical properties of powder bed fusion processed unalloyed copper are reported majorly in the as-fabricated condition, and the effect of post-processes, common to additive manufacturing, is not well documented. In this study, mechanical properties of unalloyed copper processed by electron beam powder bed fusion are characterized via room temperature quasi-static uniaxial tensile test and Vickers microhardness. Tensile samples were extracted both perpendicular and parallel to the build direction and assigned to three different conditions: as-fabricated, hot isostatic pressing (HIP), and vacuum annealing. In the as-fabricated condition, the highest UTS and lowest elongation were obtained in the samples oriented perpendicular to the build direction. These were observed to have clear trends between sample orientation caused primarily by the interdependencies between the epitaxial columnar grain morphology and dislocation movement during the tensile test. Texture was insignificant in the as-fabricated condition, and its effect on the mechanical properties was outweighed by the orientation anisotropy. The fractographs revealed a ductile mode of failure with varying dimple sizes where more shallow and finely spaced dimples were observed in the samples oriented perpendicular to the build direction. EDS maps reveal that grain boundary oxides coalesce and grow in HIP and vacuum-annealed specimens which are seen inside the ductile dimples and contribute to their increased ductility. Overall, for the post-process parameters chosen in this study, HIP was observed to slightly increase the sample's density while vacuum annealing reduced the oxygen content in the specimens.

9.
Acta Biomater ; 123: 275-285, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33444798

ABSTRACT

Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.


Subject(s)
Heart Valve Prosthesis , Animals , Cattle , Collagen , Glucose/pharmacology , Glycation End Products, Advanced , Glyoxal , Heterografts , Serum Albumin , Serum Albumin, Bovine , Swine
10.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32875167

ABSTRACT

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

11.
F1000Res ; 9: 16, 2020.
Article in English | MEDLINE | ID: mdl-32399197

ABSTRACT

Chen et al. ( Nature Genet. 51: 1549-1558; Oct. 2019) sequenced Ananas comosus var. bracteatus accession CB5, cultivated for its bright pink-to-red colored fruit, and yellow-fleshed A. comosus accession F153, reporting an improved F153 reference assembly while annotating MICRORNA (MIRNA) loci and gene family expressions relevant to lignin and anthocyanin biosynthesis. An independent article (Xiong et al.Sci. Rep. 8: 1947; 2018) reported var. bracteatus MIRNAs but not MIR828, a negative regulator of anthocyanin and polyphenolics biosynthesis by targeting MYB transcription factors associated with UV light- and sugar-signaling in dicots. MIR828 has been reported in gymnosperms, Amborella (sister to flowering plants), and basal monocot orders Liliales, Asparagales, Zingiberales, Arecales, but not in the Poales, a sister order comprising grasses and ~3,000 species of bromeliads including pineapple. Here I show MIR828 exists in pineapple and directs post-transcriptional gene silencing of mRNAs encoding MYB family members with inferred function to regulate the conspicuous red fruit trait in var. bracteatus. MIR828 plesiomorphy (an ancient basal trait) may shed light on monocot apomorphic fruit development, postulated for 21 monocot families with fleshy fruits as due to homoplasy/convergence driven by tropical climate and/or enticements to vertebrate endozoic seed dispersers.


Subject(s)
Ananas , Fruit/growth & development , MicroRNAs , RNA, Plant/genetics , Ananas/genetics , Ananas/growth & development , Base Sequence , Fruit/genetics , MicroRNAs/genetics , Transcription Factors
12.
Transgenic Res ; 29(3): 355-367, 2020 06.
Article in English | MEDLINE | ID: mdl-32328868

ABSTRACT

Pierce's disease (PD) of grapevine (Vitis vinifera) is caused by the bacterium Xylella fastidiosa and is vectored by xylem sap-sucking insects, whereas Grapevine Red Blotch Virus (GRBV) causes Red Blotch Disease and is transmitted in the laboratory by alfalfa leafhopper Spissistilus festinus. The significance of anthocyanin accumulations in distinct tissues of grapevine by these pathogens is unknown, but vector feeding preferences and olfactory cues from host anthocyanins may be important for these disease etiologies. Phosphate, sugar, and UV light are known to regulate anthocyanin accumulation via miR828 and Trans-Acting Small-interfering locus4 (TAS4), specifically in grape by production of phased TAS4a/b/c small-interfering RNAs that are differentially expressed and target MYBA5/6/7 transcription factor transcripts for post-transcriptional slicing and antisense-mediated silencing. To generate materials that can critically test these genes' functions in PD and GRBV disease symptoms, we produced transgenic grape plants targeting TAS4b and MYBA7 using CRISPR/Cas9 technology. We obtained five MYBA7 lines all with bi-allelic editing events and no off-targets detected at genomic loci with homology to the guide sequence. We obtained two independent edited TAS4b lines; one bi-allelic, the other heterozygous while both had fortuitous evidences of bi-allelic TAS4a off-target editing events at the paralogous locus. No visible anthocyanin accumulation phenotypes were observed in regenerated plants, possibly due to the presence of genetically redundant TAS4c and MYBA5/6 loci or absence of inductive environmental stress conditions. The editing events encompass single base insertions and di/trinucleotide deletions of Vvi-TAS4a/b and Vvi-MYBA7 at expected positions 3 nt upstream from the guideRNA proximal adjacent motifs NGG. We also identified evidences of homologous recombinations of TAS4a with TAS4b at the TAS4a off-target in one of the TAS4b lines, resulting in a chimeric locus with a bi-allelic polymorphism, supporting independent recombination events in transgenic plants associated with apparent high Cas9 activities. The lack of obvious visible pigment phenotypes in edited plants precluded pathogen challenge tests of the role of anthocyanins in host PD and GRBV resistance/tolerance mechanisms. Nonetheless, we demonstrate successful genome-editing of non-coding RNA and MYB transcription factor loci which can serve future characterizations of the functions of TAS4a/b/c and MYBA7 in developmental, physiological, and environmental biotic/abiotic stress response pathways important for value-added nutraceutical synthesis and pathogen responses of winegrape.


Subject(s)
Anthocyanins/biosynthesis , CRISPR-Cas Systems , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Vitis/genetics , Anthocyanins/genetics , Genome, Plant , Mutagenesis , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism , Vitis/metabolism
13.
J Am Chem Soc ; 141(38): 15327-15337, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31462037

ABSTRACT

N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h-1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co-Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B-H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent.

14.
G3 (Bethesda) ; 9(3): 769-787, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30647106

ABSTRACT

We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.


Subject(s)
Argonaute Proteins/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , MicroRNAs/metabolism , Signal Transduction , Ultraviolet Rays , Vitis/genetics , Anthocyanins/biosynthesis , Arabidopsis , Fruit/metabolism , Fruit/radiation effects , Gene Expression Profiling , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Oxidative Stress , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Vitis/metabolism , Vitis/radiation effects
15.
Dalton Trans ; 48(2): 461-467, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30488914

ABSTRACT

The phosphine-substituted α-diimine Ni precursor, (Ph2PPrDI)Ni, has been found to catalyze alkene hydrosilylation in the presence of Ph2SiH2 with turnover frequencies of up to 124 h-1 at 25 °C (990 h-1 at 60 °C). Moreover, the selective hydrosilylation of allylic and vinylic ethers has been demonstrated, even though (Ph2PPrDI)Ni is known to catalyze allyl ester C-O bond hydrosilylation. At 70 °C, this catalyst has been found to mediate the hydrosilylation of ten different gem-olefins, with turnover numbers of up to 740 under neat conditions. Prior and current mechanistic observations suggest that alkene hydrosilylation takes place though a Chalk-Harrod mechanism following phosphine donor dissociation.

16.
Dalton Trans ; 47(26): 8807-8816, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29922802

ABSTRACT

The synthesis of alkylphosphine-substituted α-diimine (DI) ligands and their subsequent addition to Ni(COD)2 allowed for the preparation of (iPr2PPrDI)Ni and (tBu2PPrDI)Ni. The solid state structures of both compounds were found to feature a distorted tetrahedral geometry that is largely consistent with the reported structure of the diphenylphosphine-substituted variant, (Ph2PPrDI)Ni. To explore and optimize the synthetic utility of this catalyst class, all three compounds were screened for benzaldehyde hydrosilylation activity at 1.0 mol% loading over 3 h at 25 °C. Notably, (Ph2PPrDI)Ni was found to be the most efficient catalyst while phenyl silane was the most effective reductant. A broad scope of aldehydes and ketones were then hydrosilylated, and the silyl ether products were hydrolyzed to afford alcohols in good yield. When attempts were made to explore ester reduction, inefficient dihydrosilylation was noted for ethyl acetate and no reaction was observed for several additional substrates. However, when an equimolar solution of allyl acetate and phenyl silane was added to 1.0 mol% (Ph2PPrDI)Ni, complete ester C-O bond hydrosilylation was observed within 30 min at 25 °C to generate propylene and PhSi(OAc)3. The scope of this reaction was expanded to include six additional allyl esters, and under neat conditions, turnover frequencies of up to 990 h-1 were achieved. This activity is believed to be the highest reported for transition metal-catalyzed ester C-O bond hydrosilylation. Proposed mechanisms for (Ph2PPrDI)Ni-mediated carbonyl and allyl ester C-O bond hydrosilylation are also discussed.

17.
Chem Commun (Camb) ; 53(53): 7333-7336, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28503682

ABSTRACT

Addition of NaEt3BH to (Ph2PPrDI)CoCl2 affords the corresponding monohydride, (Ph2PPrDI)CoH. X-ray diffraction and DFT calculations indicate that this compound possesses a radical monoanion α-DI chelate and a Co(ii) centre. Notably, (Ph2PPrDI)CoH catalyzes the hydroboration of alkynes and dihydroboration of nitriles under mild conditions.

18.
J Am Chem Soc ; 139(13): 4901-4915, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28282136

ABSTRACT

We recently reported a bis(imino)pyridine (or pyridine diimine, PDI) manganese precatalyst, (Ph2PPrPDI)Mn (1), that is active for the hydrosilylation of ketones and dihydrosilylation of esters. In this contribution, we reveal an expanded scope for 1-mediated hydrosilylation and propose two different mechanisms through which catalysis is achieved. Aldehyde hydrosilylation turnover frequencies (TOFs) of up to 4900 min-1 have been realized, the highest reported for first row metal-catalyzed carbonyl hydrosilylation. Additionally, 1 has been shown to mediate formate dihydrosilylation with leading TOFs of up to 330 min-1. Under stoichiometric and catalytic conditions, addition of PhSiH3 to (Ph2PPrPDI)Mn was found to result in partial conversion to a new diamagnetic hydride compound. Independent preparation of (Ph2PPrPDI)MnH (2) was achieved upon adding NaEt3BH to (Ph2PPrPDI)MnCl2 and single-crystal X-ray diffraction analysis revealed this complex to possess a capped trigonal bipyramidal solid-state geometry. When 2,2,2-trifluoroacetophenone was added to 1, radical transfer yielded (Ph2PPrPDI·)Mn(OC·(Ph)(CF3)) (3), which undergoes intermolecular C-C bond formation to produce the respective Mn(II) dimer, [(µ-O,Npy-4-OC(CF3)(Ph)-4-H-Ph2PPrPDI)Mn]2 (4). Upon finding 3 to be inefficient and 4 to be inactive, kinetic trials were conducted to elucidate the mechanisms of 1- and 2-mediated hydrosilylation. Varying the concentration of 1, substrate, and PhSiH3 revealed a first order dependence on each reagent. Furthermore, a kinetic isotope effect (KIE) of 2.2 ± 0.1 was observed for 1-catalyzed hydrosilylation of diisopropyl ketone, while a KIE of 4.2 ± 0.6 was determined using 2, suggesting 1 and 2 operate through different mechanisms. Although kinetic trials reveal 1 to be the more active precatalyst for carbonyl hydrosilylation, a concurrent 2-mediated pathway is more efficient for carboxylate hydrosilylation. Considering these observations, 1-catalyzed hydrosilylation is believed to proceed through a modified Ojima mechanism, while 2-mediated hydrosilylation occurs via insertion.

19.
J Heart Valve Dis ; 25(1): 82-89, 2016 01.
Article in English | MEDLINE | ID: mdl-27989090

ABSTRACT

BACKGROUND AND AIM OF THE STUDY: Aortic valve leaflets have a complex, anisotropic structure that likely plays an important role in their biomechanical function. The larger scale (bulk) biomechanical properties of the valve have been well documented. However, limited data are available regarding the biomechanical properties of individual fiber bundles and membranes that connect the bundles. The study aim was to characterize these intermediate-scale 'mesostructures' and explore biomechanical variability across the three leaflets of the aortic valve. Methods: A custom uniaxial micro-testing system was developed to test mesostructures of the aortic valve leaflet. This system uses elliptically polarized light to enhance collagen features, providing 'texture' for image correlation-based strain measurements. Porcine aortic valve membrane and fiber bundle specimens were subjected to controlled stretch-and-hold tests. Synchronized video and load data were used to measure strain, elastic modulus, relaxation time, and degree of relaxation (among other parameters). These metrics were then compared between specimen types and across the three leaflets. METHODS: A custom uniaxial micro-testing system was developed to test mesostructures of the aortic valve leaflet. This system uses elliptically polarized light to enhance collagen features, providing 'texture' for image correlation-based strain measurements. Porcine aortic valve membrane and fiber bundle specimens were subjected to controlled stretch-and-hold tests. Synchronized video and load data were used to measure strain, elastic modulus, relaxation time, and degree of relaxation (among other parameters). These metrics were then compared between specimen types and across the three leaflets. RESULTS: Fiber bundles were found to have a significantly higher elastic modulus (13.87 ± 2.81 MPa) than the membranes (2.27± 0.36 MPa). Both specimen types had similar relaxation time constants (6.75 ± 0.73 s) and degrees of relaxation (0.223 ± 0.016). The elastic modulus of the fiber bundles from the left coronary and non-coronary leaflets was significantly higher than that of the right coronary leaflet. The fiber bundle elastic modulus also negatively correlated with the fiber bundle width. CONCLUSION: The resulting differences in biomechanical properties of mesostructures are likely related to their biomechanical and hemodynamic requirements. The study findings highlight the importance of considering aortic valve leaflets as inhomogeneous. Further studies are required to characterize the morphologies, nonaffine deformations, and biomechanical properties of the valve's complex fiber-membrane mesostructures, potentially enabling the development of improved models and designs for durable replacement/repair strategies.


Subject(s)
Aortic Valve , Biomechanical Phenomena , Connective Tissue , Elasticity , Tensile Strength , Animals , Swine
20.
Plant Sci ; 241: 78-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26706061

ABSTRACT

There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Droughts , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Arabidopsis Proteins/metabolism , Cotton Fiber , DNA-Binding Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Gossypium/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...