Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Respir Res ; 22(1): 265, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666752

ABSTRACT

RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.


Subject(s)
Antifibrotic Agents/pharmacology , Epithelial Cells/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Integrin alpha6beta1/antagonists & inhibitors , Lung/drug effects , Receptors, Vitronectin/antagonists & inhibitors , Animals , Bleomycin , Cell Line , Coculture Techniques , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Integrin alpha6beta1/metabolism , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Receptors, Vitronectin/metabolism , Signal Transduction , Smad3 Protein/metabolism
2.
ACS Infect Dis ; 6(2): 180-185, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31876143

ABSTRACT

The optimization of a series of benzimidazole-benzoxaborole hybrid molecules linked via a ketone that exhibit good activity against Onchocerca volvulus, a filarial nematode responsible for the disease onchocerciasis, also known as river blindness, is described. The lead identified in this series, 21 (AN15470), was found to have acceptable pharmacokinetic properties to enable an evaluation following oral dosing in an animal model of onchocerciasis. Compound 21was effective in killing worms implanted in Mongolian gerbils when dosed orally as a suspension at 100 mg/kg/day for 14 days but not when dosed orally at 100 mg/kg/day for 7 days.


Subject(s)
Benzimidazoles/therapeutic use , Boron Compounds/therapeutic use , Ketones/chemistry , Onchocerciasis, Ocular/drug therapy , Administration, Oral , Animals , Benzimidazoles/pharmacokinetics , Boron Compounds/pharmacokinetics , Disease Models, Animal , Female , Filaricides/pharmacokinetics , Filaricides/therapeutic use , Gerbillinae , Male
3.
ACS Infect Dis ; 6(2): 173-179, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31876154

ABSTRACT

A series of benzimidazole-benzoxaborole hybrid molecules linked via an amide linker are described that exhibit good in vitro activity against Onchocerca volvulus, a filarial nematode responsible for the disease onchocerciasis, also known as river blindness. The lead identified in this series, 8a (AN8799), was found to have acceptable pharmacokinetic properties to enable evaluation in animal models of human filariasis. Compound 8a was effective in killing Brugia malayi, B. pahangi, and Litomosoides sigmodontis worms present in Mongolian gerbils when dosed subcutaneously as a suspension at 100 mg/kg/day for 14 days but not when dosed orally at 100 mg/kg/day for 28 days. The measurement of plasma levels of 8a at the end of the dosing period and at the time of sacrifice revealed an interesting dependence of activity on the extended exposure for both 8a and the positive control, flubendazole.


Subject(s)
Benzimidazoles/therapeutic use , Boron Compounds/therapeutic use , Brugia/drug effects , Onchocerciasis/drug therapy , Amides , Animals , Benzimidazoles/pharmacokinetics , Boron Compounds/pharmacokinetics , Female , Filaricides/pharmacokinetics , Filaricides/therapeutic use , Gerbillinae , Male , Onchocerca volvulus/drug effects
4.
J Med Chem ; 62(5): 2521-2540, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30730745

ABSTRACT

A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.


Subject(s)
Boron/pharmacology , Diterpenes/pharmacology , Elephantiasis, Filarial/drug therapy , Filaricides/therapeutic use , Onchocerciasis/drug therapy , Polycyclic Compounds/pharmacology , Wolbachia/drug effects , Wuchereria bancrofti/drug effects , Animals , Boron/chemistry , Diterpenes/chemistry , Filaricides/pharmacokinetics , Filaricides/pharmacology , Mice , Mice, Inbred BALB C , Mice, SCID , Polycyclic Compounds/chemistry , Pleuromutilins
5.
J Am Podiatr Med Assoc ; 108(1): 12-19, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29547036

ABSTRACT

Onychomycosis is a fungal infection of the nail primarily caused by the dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes. The topical-based treatment of onychomycosis remains a challenge because of the difficulty associated with penetrating the dense, protective structure of the keratinized nail plate. Tavaborole is a novel small-molecule antifungal agent recently approved in the United States for the topical treatment of toenail onychomycosis. The low molecular weight, slight water solubility, and boron chemistry of tavaborole maximize nail penetration after topical application, allowing for effective targeting of the infection in the nail bed. The efficacy of tavaborole is associated with its novel mechanism of action, whereby it inhibits the fungal leucyl-tRNA synthetase (LeuRS) enzyme. Because LeuRS is an essential component in fungal protein synthesis, inhibition of LeuRS ultimately leads to fungal cell death. Tavaborole is the first boron-based antifungal medication approved for the treatment of mild-to-moderate onychomycosis and presents patients with a new topical option. Previously, ciclopirox and efinaconazole were the only approved topical treatments for onychomycosis. This article details the properties that are at the core of the clinical benefits associated with tavaborole.


Subject(s)
Boron Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Onychomycosis/drug therapy , Humans , Microbial Sensitivity Tests , Nails/drug effects , Nails/microbiology , Onychomycosis/metabolism , Treatment Outcome
6.
J Med Chem ; 60(19): 8011-8026, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28953378

ABSTRACT

There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC50 = 0.20 µM) and in vitro antitubercular activity (Mtb H37Rv MIC = 0.08 µM). Additionally, it is highly selective for the Mtb LeuRS enzyme with IC50 of >300 µM and 132 µM for human mitochondrial LeuRS and human cytoplasmic LeuRS, respectively. In addition, it exhibits remarkable PK profiles and efficacy against Mtb in mouse TB infection models with superior tolerability over initial leads. This compound has been progressed to clinical development for the treatment of tuberculosis.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Boron Compounds/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Animals , Antitubercular Agents/pharmacokinetics , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Female , Heterocyclic Compounds, 2-Ring/chemical synthesis , Humans , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Substrate Specificity
7.
PLoS Negl Trop Dis ; 11(7): e0005680, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28704396

ABSTRACT

BACKGROUND: Reliance on just one drug to treat the prevalent tropical disease, schistosomiasis, spurs the search for new drugs and drug targets. Inhibitors of human cyclic nucleotide phosphodiesterases (huPDEs), including PDE4, are under development as novel drugs to treat a range of chronic indications including asthma, chronic obstructive pulmonary disease and Alzheimer's disease. One class of huPDE4 inhibitors that has yielded marketed drugs is the benzoxaboroles (Anacor Pharmaceuticals). METHODOLOGY/PRINCIPAL FINDINGS: A phenotypic screen involving Schistosoma mansoni and 1,085 benzoxaboroles identified a subset of huPDE4 inhibitors that induced parasite hypermotility and degeneration. To uncover the putative schistosome PDE4 target, we characterized four PDE4 sequences (SmPDE4A-D) in the parasite's genome and transcriptome, and cloned and recombinantly expressed the catalytic domain of SmPDE4A. Among a set of benzoxaboroles and catechol inhibitors that differentially inhibit huPDE4, a relationship between the inhibition of SmPDE4A, and parasite hypermotility and degeneration, was measured. To validate SmPDE4A as the benzoxaborole molecular target, we first generated Caenorhabditis elegans lines that express a cDNA for smpde4a on a pde4(ce268) mutant (hypermotile) background: the smpde4a transgene restored mutant worm motility to that of the wild type. We then showed that benzoxaborole inhibitors of SmPDE4A that induce hypermotility in the schistosome also elicit a hypermotile response in the C. elegans lines that express the smpde4a transgene, thereby confirming SmPDE4A as the relevant target. CONCLUSIONS/SIGNIFICANCE: The orthogonal chemical, biological and genetic strategies employed identify SmPDE4A's contribution to parasite motility and degeneration, and its potential as a drug target. Transgenic C. elegans is highlighted as a potential screening tool to optimize small molecule chemistries to flatworm molecular drug targets.


Subject(s)
Anthelmintics/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Schistosoma mansoni/drug effects , Animals , Animals, Genetically Modified/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Catalytic Domain , Cloning, Molecular , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Locomotion/drug effects , Schistosoma mansoni/anatomy & histology , Schistosoma mansoni/physiology
8.
Antimicrob Agents Chemother ; 60(10): 6271-80, 2016 10.
Article in English | MEDLINE | ID: mdl-27503647

ABSTRACT

The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.


Subject(s)
Antitubercular Agents/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Synthesis Inhibitors/pharmacology , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Humans , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/genetics , Protein Synthesis Inhibitors/administration & dosage , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacokinetics , Structure-Activity Relationship , Tuberculosis/drug therapy , Vero Cells
9.
J Pharmacol Exp Ther ; 358(3): 413-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27353073

ABSTRACT

Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal lymphopoietin expression in mouse skin. Skin thinning is a major dose-limiting side effect of glucocorticoids. By contrast, repeated application of compd3 did not thin mouse skin. These findings show the potential benefits and safety of benzoxaborole PDE4 inhibitors for the treatment of psoriasis and atopic dermatitis.


Subject(s)
Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dermatitis, Atopic/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Psoriasis/drug therapy , Skin/drug effects , Skin/pathology , Administration, Topical , Animals , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Gene Expression Regulation/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Phosphodiesterase 4 Inhibitors/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphorylation/drug effects , Psoriasis/metabolism , Psoriasis/pathology , Skin/metabolism , Thymic Stromal Lymphopoietin
10.
J Pharmacol Exp Ther ; 347(3): 615-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24049062

ABSTRACT

Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use.


Subject(s)
Boron Compounds/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , Animals , Aorta, Thoracic/drug effects , Blood Pressure/drug effects , Cytokines/blood , Humans , Jurkat Cells , Models, Molecular , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Phosphatase 1/metabolism , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Structure-Activity Relationship , Trachea/drug effects , rho-Associated Kinases/genetics
11.
Antimicrob Agents Chemother ; 57(3): 1394-403, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23295920

ABSTRACT

Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Escherichia coli/drug effects , Gram-Negative Bacterial Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Amino Acyl-tRNA Synthetases/metabolism , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Boron Compounds/chemical synthesis , Boron Compounds/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/enzymology , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Leucine/metabolism , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , Thigh/microbiology , beta-Lactamase Inhibitors , beta-Lactamases/metabolism
12.
FEBS Lett ; 586(19): 3410-4, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22841723

ABSTRACT

We have used boron-based molecules to create novel, competitive, reversible inhibitors of phosphodiesterase 4 (PDE4). The co-crystal structure reveals a binding configuration which is unique compared to classical catechol PDE4 inhibitors, with boron binding to the activated water in the bimetal center. These phenoxybenzoxaboroles can be optimized to generate submicromolar potency enzyme inhibitors, which inhibit TNF-α, IL-2, IFN-γ, IL-5 and IL-10 activities in vitro and show safety and efficacy for topical treatment of human psoriasis. They provide a valuable new route for creating novel potent anti-PDE4 inhibitors.


Subject(s)
Boron Compounds/chemistry , Boron Compounds/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binding, Competitive , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Catalytic Domain , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cytokines/biosynthesis , Humans , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Metals/chemistry , Models, Molecular , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Bioorg Med Chem Lett ; 21(8): 2533-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21392987

ABSTRACT

A new class of benzoxaborole ß-lactamase inhibitors were designed and synthesized. 6-Aryloxy benzoxaborole 22 inhibited AmpC P99 and CMY-2 with K(i) values in the low nanomolar range. Compound 22 restored antibacterial activity of ceftazidime against Enterobacter cloacae P99 expressing AmpC, a class C ß-lactamase enzyme. The SAR around the arylbenzoxaboroles, which included the influence of linker and substitutions was also established.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzoxazoles/chemistry , Boron Compounds/chemistry , Enzyme Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Enterobacter cloacae/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Pyrazines/chemistry , Pyrazines/pharmacology , Structure-Activity Relationship , beta-Lactamases/metabolism
14.
J Med Chem ; 54(5): 1276-87, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21322634

ABSTRACT

African trypanosomiasis, caused by the proto zoal pathogen Trypanosoma brucei (T. brucei), is one of the most neglected tropical diseases that are in great need of new drugs. We report the design and synthesis of T. brucei leucyl-tRNA synthetase (TbLeuRS) inhibitors and their structure--activity relationship. Benzoxaborole was used as the core structure and C(6) was modified to achieve improved affinity based on docking results that showed further binding space at this position. Indeed, compounds with C(7) substitutions showed diminished activity due to clash with the eukaryote specific I4ae helix while substitutions at C(6) gave enhanced affinity. TbLeuRS inhibitors with IC(50) as low as 1.6 µM were discovered, and the structure-activity relationship was discussed. The most potent enzyme inhibitors also showed excellent T. brucei parasite growth inhibition activity. This is the first time that TbLeuRS inhibitors are reported, and this study suggests that leucyl-tRNA synthetase (LeuRS) could be a potential target for antiparasitic drug development.


Subject(s)
Boronic Acids/chemical synthesis , Leucine-tRNA Ligase/antagonists & inhibitors , Trypanocidal Agents/chemical synthesis , Trypanosoma brucei brucei/drug effects , Animals , Boronic Acids/chemistry , Boronic Acids/pharmacology , Cell Line , Drug Design , Mice , Models, Molecular , Stereoisomerism , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/growth & development
15.
Biochemistry ; 47(14): 4228-36, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18335995

ABSTRACT

Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.


Subject(s)
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enzyme Inhibitors/pharmacology , Staphylococcus aureus/enzymology , Amino Acid Sequence , Catalysis , Conserved Sequence , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/isolation & purification , Enzyme Activation/drug effects , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation/genetics , Phenyl Ethers/pharmacology , Sequence Alignment , Staphylococcus aureus/genetics , Substrate Specificity
16.
Science ; 316(5832): 1759-61, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17588934

ABSTRACT

Aminoacyl-transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA(Leu)-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2'- and 3'-oxygen atoms of tRNA's3'-terminal adenosine. The trapping of enzyme-bound tRNA(Leu) in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA(Leu) and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.


Subject(s)
Antifungal Agents/pharmacology , Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Enzyme Inhibitors/pharmacology , Leucine-tRNA Ligase/antagonists & inhibitors , RNA Editing , RNA, Transfer, Leu/antagonists & inhibitors , Antifungal Agents/chemistry , Boron/chemistry , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Drug Resistance, Fungal/genetics , Enzyme Inhibitors/chemistry , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Mutation , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , RNA Editing/drug effects , RNA, Transfer, Leu/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...