Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 196(1): 126-140, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37632788

ABSTRACT

Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1ß2γ2, nicotinic α4ß2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/physiology , Neurons/physiology , Seizures/chemically induced , Microelectrodes , Ion Channels
2.
Pharmacol Ther ; 202: 18-31, 2019 10.
Article in English | MEDLINE | ID: mdl-31173840

ABSTRACT

Destruction of the established tumour vasculature by a class of compound termed Vascular Disrupting Agents (VDAs) is showing considerable promise as a viable approach for the management of solid tumours. VDAs induce a rapid shutdown and collapse of tumour blood vessels, leading to ischaemia and consequent necrosis of the tumour mass. Their efficacy is hindered by the persistence of a viable rim of tumour cells, supported by the peripheral normal vasculature, necessitating their co-administration with additional chemotherapeutics for maximal therapeutic benefit. However, a major limitation for the use of many cancer therapeutics is the development of life-threatening cardiovascular toxicities, with significant consequences for treatment response and the patient's quality of life. The aim of this review is to outline VDAs as a cancer therapeutic approach and define the mechanistic basis of cardiovascular toxicities of current chemotherapeutics, with the overall objective of discussing whether VDA combinations with specific chemotherapeutic classes would be good or bad in terms of cardiovascular toxicity.


Subject(s)
Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Cardiovascular Diseases/chemically induced , Cardiovascular System/drug effects , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Animals , Humans , Quality of Life
3.
Toxicol Res (Camb) ; 8(6): 784-788, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-32206299

ABSTRACT

Data show that toxicity to the central nervous system (CNS) is the most frequent cause of safety failures during the clinical phase of drug development. CNS endpoints such as seizure pose a safety risk to patients and volunteers and can lead to a loss of competitiveness, delays, and increased costs. Current methods rely on detection in the nonclinical rodent and non-rodent studies required to support clinical trials. There are two main issues with this approach; seizure may be missed in the animal studies and, even if seizure is detected, significant resource has already been invested in the project by this stage. Thus, there is a need to develop improved screening methods that can be used earlier in drug discovery to predict seizure. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. Human derived induced pluripotent stem cells (hiPSCs) representative of almost all cellular subtypes present in the brain can be incorporated into physiologically relevant in vitro models that can be used to determine seizure risk using high-throughput methods. Akin to the success of screening against a panel of ion channels such as hERG to reduce cardiovascular safety liability, the involvement of ion channels in seizure suggests that a similar approach to early seizure detection is valid. Profiling of the ion channels expressed in hiPSC models showing the seizurogenic phenotype coupled with electrophysiological assessment of ion channel function could translate into an ion channel seizure panel for rapid and reliable in vitro detection of seizure. The mechanistic information gathered would support optimal drug design early in development before resources, animals and time have been wasted.

4.
Dalton Trans ; 45(32): 12807-13, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27468432

ABSTRACT

For the first time, a series of 25 pseudo-octahedral pyridylphosphinate metal complexes (Ru, Os, Rh, Ir) has been synthesised and assessed in biological systems. Each metal complex incorporates a pyridylphosphinate ligand, a monodentate halide and a capping η(6)-bound aromatic ligand. Solid- and solution-state analyses of two complexes reveal a structural preference for one of a possible two diastereomers. The metal chlorides hydrolyse rapidly in D2O to form a 1 : 1 equilibrium ratio between the aqua and chloride adducts. The pKa of the aqua adduct depends upon the pyridyl substituent and the metal but has little dependence upon the phosphinate R' group. Toxicity was measured in vitro against non-small cell lung carcinoma H460 cells, with the most potent complexes reporting IC50 values around 50 µM. Binding studies with selected amino acids and nucleobases provide a rationale for the variation in toxicity observed within the series. Finally, an investigation into the ability of the chelating amino acid l-His to displace the phosphinate O-metal bond shows the potential for phosphinate complexes to act as prodrugs that can be activated in the intracellular environment.


Subject(s)
Coordination Complexes , Metals, Heavy , Organophosphorus Compounds , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Histidine/chemistry , Histidine/pharmacology , Humans , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Molecular Structure , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology
5.
Chempluschem ; 81(12): 1276-1280, 2016 Dec.
Article in English | MEDLINE | ID: mdl-31964062

ABSTRACT

The first examples of RuII and RhIII piano-stool complex histone deacetylase (HDAC) inhibitors are presented. The novel complexes have antiproliferative activity against H460 non-small-cell lung carcinoma cells that is comparable to the clinically used HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Strong evidence for HDAC inhibition as a primary mechanism of action is provided. The complexes reported here represent an important step towards the design of highly active and selective HDAC inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...