Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 27(11): 1332-1346, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32888500

ABSTRACT

The promise of phenotypic screening resides in its track record of novel biology and first-in-class therapies. However, challenges stemming from major differences between target-based and phenotypic screening do exist. These challenges prompted us to rethink the critical stage of hit triage and validation on the road to clinical candidates and novel drug targets. Whereas this process is usually straightforward for target screening hits, phenotypic screening hits act through a variety of mostly unknown mechanisms within a large and poorly understood biological space. Our analysis suggests successful hit triage and validation is enabled by three types of biological knowledge-known mechanisms, disease biology, and safety-while structure-based hit triage may be counterproductive.


Subject(s)
Triage , Drug Discovery , Humans , Phenotype
2.
J Pharmacol Exp Ther ; 356(2): 293-304, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26582730

ABSTRACT

The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it suggests that dose-limiting cholinergic side effects still reside in M1 receptor selective activators.


Subject(s)
Muscarinic Agonists/metabolism , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Male , Mice , Rats , Rats, Sprague-Dawley
3.
J Chem Inf Model ; 55(9): 1836-43, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26347990

ABSTRACT

With the hope of discovering effective analgesics with fewer side effects, attention has recently shifted to allosteric modulators of the opioid receptors. In the past two years, the first chemotypes of positive or silent allosteric modulators (PAMs or SAMs, respectively) of µ- and δ-opioid receptor types have been reported in the literature. During a structure-guided lead optimization campaign with µ-PAMs BMS-986121 and BMS-986122 as starting compounds, we discovered a new chemotype that was confirmed to display µ-PAM or µ-SAM activity depending on the specific substitutions as assessed by endomorphin-1-stimulated ß-arrestin2 recruitment assays in Chinese Hamster Ovary (CHO)-µ PathHunter cells. The most active µ-PAM of this series was analyzed further in competition binding and G-protein activation assays to understand its effects on ligand binding and to investigate the nature of its probe dependence.


Subject(s)
Drug Discovery , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Allosteric Regulation , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Delivery Systems , Ligands , Models, Biological , Molecular Structure , Protein Binding/drug effects , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
4.
Bioorg Med Chem Lett ; 25(22): 5352-6, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26411795

ABSTRACT

A novel series of spirocyclic-diamine based, isoform non-selective inhibitors of acetyl-CoA carboxylase (ACC) is described. These spirodiamine derivatives were discovered by design of a library to mimic the structural rigidity and hydrogen-bonding pattern observed in the co-crystal structure of spirochromanone inhibitor I. The lead compound 3.5.1 inhibited de novo lipogenesis in rat hepatocytes, with an IC50 of 0.30 µM.


Subject(s)
Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Drug Discovery , Hepatocytes/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hepatocytes/enzymology , Humans , Inhibitory Concentration 50 , Models, Biological , Molecular Structure , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
5.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109678

ABSTRACT

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Subject(s)
Allosteric Regulation/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Animals , CHO Cells , Cell Line , Cells, Cultured , Cricetulus , HEK293 Cells , Humans , Mice , Rats , Schizophrenia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...