Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Reprod Dev ; 55(3): 335-49, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10657053

ABSTRACT

The onset of the zona pellucida-induced acrosome reaction in mouse sperm is marked by loss of the pH gradient existing in acrosome-intact sperm between the acidic acrosomal lumen and the suspending medium, due to pore formation between outer acrosomal and plasma membranes. In earlier work, it was shown that this pH gradient loss occurred in single sperm bound to structurally intact zonae pellucidae with a half-time of 2.1 min; the extended kinetics of this loss determined in a sperm population bound to intact zonae was due to a 180-min range of variable lag times. We hypothesized that this lag time range was due to steric constraints imposed by the three-dimensional structure of the structurally intact zona pellucida, and that this constraint should be removed in solubilized zonae. The fluorescent probe, Dapoxyl(TM) (2-aminoethyl)sulfonamide (DAES) allowed a test of this hypothesis in a population of sperm cells. It is a weak base that is non-fluorescent in aqueous solution, but which accumulates in the acidic acrosomal compartment due to the pH gradient with highly enhanced fluorescence; loss of the pH gradient leads to a decrease in fluorescence. The half-time for DAES fluorescence loss in a population of capacitated, acrosome-intact sperm in response to solubilized zona pellucida protein was 2.13 +/- 0.10 min (SEM, n = 9). The agreement between single cell and cell population kinetics validates the hypothesis of steric constraint in the structurally intact zona pellucida. The change in intracellular Ca(2+) concentration in response to solubilized zona pellucida, as monitored with fluo-3, was a rapid increase, followed by a decrease, with a half-time of 0.85 +/- 0.09 min (SEM, n = 6) to a steady state level higher than the initial level, indicating this Ca(2+) transient as the precursor reaction to onset of the zona-induced acrosome reaction.


Subject(s)
Acrosome Reaction , Aniline Compounds/pharmacology , Calcium/metabolism , Receptors, Cell Surface , Xanthenes/pharmacology , Zona Pellucida/drug effects , Acrosome/metabolism , Animals , Dose-Response Relationship, Drug , Egg Proteins/metabolism , Female , Fluorescent Dyes/pharmacology , Fluorometry , Hydrogen-Ion Concentration , Ionomycin/pharmacology , Kinetics , Male , Membrane Glycoproteins/metabolism , Mice , Taurine/pharmacology , Time Factors , Zona Pellucida Glycoproteins
2.
Mol Reprod Dev ; 54(4): 418-28, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10542383

ABSTRACT

In order to calculate the actual, rather than the relative, intracellular Ca(2+) concentration (Ca(2+))(i) in mammalian sperm cells, using fluorescent probes whose fluorescence emission differs between the probe. Ca(2+) complex and free probe, the value of the dissociation constant for the probe. Ca(2+) complex, K(D), is required. Interaction of the probe with cellular components may change the intracellular value of K(D) from that determined in buffered solution. We had previously shown that fluo-3, whose Ca(2+) complex is highly fluorescent whereas free fluo-3 is not, could be used to monitor changes of (Ca(2+))(i) in mouse sperm. In this report, we describe a method for determining K(D) for the fluo-3. Ca(2+) complex in mouse sperm suspended in medium MJB, a medium in which the sperm remain viable, but which contains high Ca(2+). The method involved treating the sperm with ionomycin to provide a plasma membrane Ca(2+) carrier, with nigericin to eliminate pH gradient, and with gramicidin D to eliminate membrane potential, such that (Ca(2+))(i) equilibrates with medium Ca(2+) concentration (Ca(2+))(e), then titrating (Ca(2+))(e) with EGTA in added aliquots to near nil concentration. At EGTA concentrations in excess of total medium Ca(2+), an approximation algorithm was used to calculate (Ca(2+))(e), based on the known K(D) for the EGTA. Ca(2+) complex. The fluorescence of the intracellular fluo-3. Ca(2+) complex, F, decreased with increasing additions of EGTA; (Ca(2+))(i) = (Ca(2+))(e) was plotted as a linear function of F/[F(max) - F]; the slope gives K(D). At 37 degrees C, intracellular K(D) was calculated to be 0.636 +/- 0.018 microM (+/-SEM, n = 8). At 37 degrees C and 20 degrees C, K(D) values in MJB were calculated to be 0.502 +/- 0.022 and 0.578 +/- 0.029 (+/-SEM, n =8 and n = 6), respectively. The higher intracellular K(D) value implies probe interaction with cytosol components, primarily those in the head, as this compartment is the major contributor to sperm fluorescence. Changes in (Ca(2+))(i), monitored with fluo-3 fluorescence, that occur on interaction of capacitated mouse sperm with the zona pellucida and may now be quantified, using 0.636 microM for K(D) of the intracellular fluo-3. Ca(2+) complex.


Subject(s)
Aniline Compounds/metabolism , Calcium/metabolism , Spermatozoa/metabolism , Xanthenes/metabolism , Animals , Cells, Cultured , Culture Media/chemistry , Egtazic Acid/metabolism , Kinetics , Male , Mice , Models, Chemical , Octoxynol/analysis , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...