Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Invest ; 133(1)2023 01 03.
Article in English | MEDLINE | ID: mdl-36282598

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19/genetics , T-Lymphocytes, Regulatory , Inflammation/genetics , Receptor, Notch1/genetics , Sialic Acid Binding Ig-like Lectin 2
2.
Res Sq ; 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35441180

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcome were previously correlated with Notch4 expression on regulatory T (Treg) cells, here we show that the Treg cells in MIS-C are destabilized in association with increased Notch1 expression. Genetic analysis revealed that MIS-C patients were enriched in rare deleterious variant impacting inflammation and autoimmunity pathways, including dominant negative mutations in the Notch1 regulators NUMB and NUMBL. Notch1 signaling in Treg cells induced CD22, leading to their destabilization in an mTORC1 dependent manner and to the promotion of systemic inflammation. These results establish a Notch1-CD22 signaling axis that disrupts Treg cell function in MIS-C and point to distinct immune checkpoints controlled by individual Treg cell Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...