Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
SIAM J Appl Math ; 84(3): S476-S492, 2024.
Article in English | MEDLINE | ID: mdl-38912397

ABSTRACT

The transport of particles in cells is influenced by the properties of intracellular networks they traverse while searching for localized target regions or reaction partners. Moreover, given the rapid turnover in many intracellular structures, it is crucial to understand how temporal changes in the network structure affect diffusive transport. In this work, we use network theory to characterize complex intracellular biological environments across scales. We develop an efficient computational method to compute the mean first passage times for simulating a particle diffusing along two-dimensional planar networks extracted from fluorescence microscopy imaging. We first benchmark this methodology in the context of synthetic networks, and subsequently apply it to live-cell data from endoplasmic reticulum tubular networks.

2.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38842573

ABSTRACT

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport , Extracellular Vesicles , Motor Neurons , Signal Transduction , Synapses , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Synapses/metabolism , Motor Neurons/metabolism , Autophagy , Synaptotagmins/metabolism , Synaptotagmins/genetics , Neuroglia/metabolism
3.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746182

ABSTRACT

Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.

5.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014140

ABSTRACT

Neuromuscular junctions (NMJs) are evolutionarily ancient, specialized contacts between neurons and muscles. Axons and NMJs must endure mechanical strain through a lifetime of muscle contraction, making them vulnerable to aging and neurodegenerative conditions. However, cellular strategies for mitigating this mechanical stress remain unknown. In this study, we used Drosophila larval NMJs to investigate the role of actin and myosin (actomyosin)-mediated contractility in generating and responding to cellular forces at the neuron-muscle interface. We identified a new long-lived, low-turnover presynaptic actin core traversing the NMJ, which partly co-localizes with non-muscle myosin II (NMII). Neuronal RNAi of NMII induced disorganization of this core, suggesting that this structure might have contractile properties. Interestingly, neuronal RNAi of NMII also decreased NMII levels in the postsynaptic muscle proximal to neurons, suggesting that neuronal actomyosin rearrangements propagate their effects transsynaptically. We also observed reduced Integrin levels upon NMII knockdown, indicating that neuronal actomyosin disruption triggers rearrangements of Integrin-mediated connections between neurons and surrounding muscle tissue. In summary, our study identifies a previously uncharacterized presynaptic actomyosin subpopulation that upholds the neuronal mechanical continuum, transmits signals to adjacent muscle tissue, and collaborates with Integrin receptors to govern the mechanobiology of the neuromuscular junction.

6.
bioRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693578

ABSTRACT

The endoplasmic reticulum (ER) is a continuous organelle that extends to the periphery of neurons and regulates many neuronal functions including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP). However, the ultrastructure and dynamics of the neuronal ER have been under-investigated, particularly at presynaptic terminals. Here we developed new super-resolution and live imaging methods in D. melanogaster larval motor neurons to investigate ER structure at presynaptic terminals from wild-type animals, and in null mutants of the HSP gene Atlastin. Previous studies indicated diffuse localization of an ER lumen marker at Atlastin mutant presynaptic terminals, which was attributed to ER fragmentation. By contrast, we found using an ER membrane marker that the ER in Atlastin mutants formed robust networks. Further, our high-resolution imaging results suggest that overexpression of luminal ER proteins in Atlastin mutants causes their progressive displacement to the cytosol at synapses, perhaps due to proteostatic stress and/or changes in ER membrane integrity. Remarkably, these luminal ER proteins remain correctly localized in cell bodies, axons, and other cell types such as body wall muscles, suggesting that ER tubules at synapses have unique structural and functional characteristics. This displacement phenotype has not been reported in numerous studies of Atlastin in non-neuronal cells, emphasizing the importance of conducting experiments in neurons when investigating the mechanisms leading to upper motor neuron dysfunction in HSP.

7.
Nat Commun ; 14(1): 999, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890170

ABSTRACT

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Subject(s)
Actins , Tyrosine-tRNA Ligase , Animals , Humans , Actins/metabolism , Charcot-Marie-Tooth Disease/genetics , Drosophila/genetics , Glycine-tRNA Ligase/genetics , Mutation , RNA, Transfer , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Cell Line, Tumor
8.
Mol Biol Cell ; 34(6): ar51, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36542486

ABSTRACT

Following exocytosis at active zones, synaptic vesicle membranes and membrane-bound proteins must be recycled. The endocytic machinery that drives this recycling accumulates in the periactive zone (PAZ), a region of the synapse adjacent to active zones, but the organization of this machinery within the PAZ, and how PAZ composition relates to active zone release properties, remains unknown. The PAZ is also enriched for cell adhesion proteins, but their function at these sites is poorly understood. Here, using Airyscan and stimulated emission depletion imaging of Drosophila synapses, we develop a quantitative framework describing the organization and ultrastructure of the PAZ. Different endocytic proteins localize to distinct regions of the PAZ, suggesting that subdomains are specialized for distinct biochemical activities, stages of membrane remodeling, or synaptic functions. We find that the accumulation and distribution of endocytic but not adhesion PAZ proteins correlate with the abundance of the scaffolding protein Bruchpilot at active zones-a structural correlate of release probability. These data suggest that endocytic and exocytic activities are spatially correlated. Taken together, our results identify novel relationships between the exocytic and endocytic apparatus at the synapse and provide a new conceptual framework to quantify synaptic architecture.


Subject(s)
Drosophila Proteins , Synapses , Animals , Synapses/metabolism , Synaptic Vesicles/metabolism , Drosophila/metabolism , Membrane Proteins/metabolism , Drosophila Proteins/metabolism , Synaptic Transmission
9.
Curr Opin Neurobiol ; 76: 102625, 2022 10.
Article in English | MEDLINE | ID: mdl-36037564

Subject(s)
Neurosciences
10.
J Am Chem Soc ; 144(15): 6709-6713, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35404599

ABSTRACT

The Golgi apparatus (GA) is the hub of intracellular trafficking, but selectively targeting GA remains a challenge. We show an unconventional types of peptide thioesters, consisting of an aminoethyl thioester and acting as substrates of thioesterases, for instantly targeting the GA of cells. The peptide thioesters, above or below their critical micelle concentrations, enter cells mainly via caveolin-mediated endocytosis or macropinocytosis, respectively. After being hydrolyzed by GA-associated thioesterases, the resulting thiopeptides form dimers and accumulate in the GA. After saturating the GA, the thiopeptides are enriched in the endoplasmic reticulum (ER). Their buildup in ER and GA disrupts protein trafficking, thus leading to cell death via multiple pathways. The peptide thioesters target the GA of a wide variety of cells, including human, murine, and Drosophila cells. Changing d-diphenylalanine to l-diphenylalanine in the peptide maintains the GA-targeting ability. In addition, targeting GA redirects protein (e.g., NRAS) distribution. This work illustrates a thioesterase-responsive and redox-active molecular platform for targeting the GA and controlling cell fates.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Animals , Drosophila , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Mice , Peptides/metabolism , Phenylalanine/metabolism
11.
Neuron ; 110(5): 735-737, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35240059

ABSTRACT

In this issue of Neuron, Yang et al. show that autophagy machinery is tightly coupled to neuronal activity via endocytic cycling of the transmembrane protein ATG-9 at presynaptic terminals.


Subject(s)
Autophagosomes , Endocytosis , Autophagosomes/metabolism , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Endocytosis/physiology , Neurons/metabolism
12.
J Cell Biol ; 221(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35320349

ABSTRACT

Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.


Subject(s)
Extracellular Vesicles , Synaptic Vesicles , Endosomes , Extracellular Vesicles/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism
13.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: mdl-34324418

ABSTRACT

Synaptic membrane-remodeling events such as endocytosis require force-generating actin assembly. The endocytic machinery that regulates these actin and membrane dynamics localizes at high concentrations to large areas of the presynaptic membrane, but actin assembly and productive endocytosis are far more restricted in space and time. Here we describe a mechanism whereby autoinhibition clamps the presynaptic endocytic machinery to limit actin assembly to discrete functional events. We found that collective interactions between the Drosophila endocytic proteins Nwk/FCHSD2, Dap160/intersectin, and WASp relieve Nwk autoinhibition and promote robust membrane-coupled actin assembly in vitro. Using automated particle tracking to quantify synaptic actin dynamics in vivo, we discovered that Nwk-Dap160 interactions constrain spurious assembly of WASp-dependent actin structures. These interactions also promote synaptic endocytosis, suggesting that autoinhibition both clamps and primes the synaptic endocytic machinery, thereby constraining actin assembly to drive productive membrane remodeling in response to physiological cues.


Neurons constantly talk to each other by sending chemical signals across the tiny gap, or 'synapse', that separates two cells. While inside the emitting cell, these molecules are safely packaged into small, membrane-bound vessels. Upon the right signal, the vesicles fuse with the external membrane of the neuron and spill their contents outside, for the receiving cell to take up and decode. The emitting cell must then replenish its vesicle supply at the synapse through a recycling mechanism known as endocytosis. To do so, it uses dynamically assembling rod-like 'actin' filaments, which work in concert with many other proteins to pull in patches of membrane as new vesicles. The proteins that control endocytosis and actin assembly abound at neuronal synapses, and, when mutated, are linked to many neurological diseases. Unlike other cell types, neurons appear to 'pre-deploy' these actin-assembly proteins to synaptic membranes, but to keep them inactive under normal conditions. How neurons control the way this machinery is recruited and activated remains unknown. To investigate this question, Del Signore et al. conducted two sets of studies. First, they exposed actin to several different purified proteins in initial 'test tube' experiments. This revealed that, depending on the conditions, a group of endocytosis proteins could prevent or promote actin assembly: assembly occurred only if the proteins were associated with membranes. Next, Del Signore et al. mutated these proteins in fruit fly larvae, and performed live cell microscopy to determine their impact on actin assembly and endocytosis. Consistent with the test tube findings, endocytosis mutants had more actin assembly overall, implying that the proteins were required to prevent random actin assembly. However, the same mutants had reduced levels of endocytosis, suggesting that the proteins were also necessary for productive actin assembly. Together, these experiments suggest that, much like a mousetrap holds itself poised ready to spring, some endocytic proteins play a dual role to restrain actin assembly when and where it is not needed, and to promote it at sites of endocytosis. These results shed new light on how neurons might build and maintain effective, working synapses. Del Signore et al. hope that this knowledge may help to better understand and combat neurological diseases, such as Alzheimer's, which are linked to impaired membrane traffic and cell signalling.


Subject(s)
Actins/genetics , Actins/metabolism , Drosophila/genetics , Drosophila/metabolism , Endocytosis/genetics , Synapses/physiology , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endocytosis/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Synaptic Vesicles/metabolism
14.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34019080

ABSTRACT

Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Extracellular Vesicles/metabolism , Presynaptic Terminals/metabolism , rab GTP-Binding Proteins/metabolism , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Extracellular Vesicles/genetics , Extracellular Vesicles/ultrastructure , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Presynaptic Terminals/ultrastructure , Protein Transport , Synaptotagmins/genetics , Synaptotagmins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 117(21): 11760-11769, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393629

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.


Subject(s)
Cyclic AMP Response Element-Binding Protein , DNA-Binding Proteins , Dendrites , Gene Expression Regulation/genetics , Signal Transduction , Animals , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dendrites/metabolism , Dendrites/pathology , HEK293 Cells , Humans , RNA, Messenger/metabolism , Rats , Signal Transduction/genetics , Signal Transduction/physiology , TDP-43 Proteinopathies
16.
Curr Opin Neurobiol ; 63: 104-110, 2020 08.
Article in English | MEDLINE | ID: mdl-32387925

ABSTRACT

Neurons release membrane-bound extracellular vesicles (EVs) carrying proteins, nucleic acids, and other cargoes to mediate neuronal development, plasticity, inflammation, regeneration, and degeneration. Functional studies and therapeutic interventions into EV-dependent processes will require a deep understanding of how neuronal EVs are formed and released. However, unraveling EV biogenesis and trafficking mechanisms is challenging, since there are multiple pathways governing generation of different types of EVs, which overlap mechanistically with each other, as well as with intracellular endolysosomal trafficking pathways. Further, neurons present special considerations for EVs due to their extreme morphologies and specialization for membrane traffic. Here, we review recent work elucidating neuronal pathways that regulate EV biogenesis and release, with the goal of identifying directed strategies for experimental and therapeutic targeting of specific types of EVs.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Neurons , Protein Transport , Proteins/metabolism
17.
Elife ; 92020 04 14.
Article in English | MEDLINE | ID: mdl-32286230

ABSTRACT

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


Subject(s)
Aging/metabolism , Brain/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Synaptic Transmission/physiology , Vesicular Transport Proteins/metabolism , Animals , Drosophila , Drosophila Proteins/metabolism
18.
ACS Chem Biol ; 15(3): 789-798, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32109354

ABSTRACT

The high mannose patch (HMP) of the HIV envelope protein (Env) is the structure most frequently targeted by broadly neutralizing antibodies; therefore, many researchers have attempted to use mimics of this region as a vaccine immunogen. In our previous efforts, vaccinating rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core and linker rather than the full glycan or Manα1→2Man tips of Man9 glycans. A possible reason could be processing of our immunogen by host serum mannosidases. We sought to test whether more prolonged dosing could increase the antibody response to intact glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating the impact of immunization regimen on antibody response by testing immunogen delivery through bolus, an exponential series of mini doses, or a continuously infusing mini-osmotic pump. Our results indicate that, with our glycopeptide immunogens, standard bolus immunization elicited the strongest HIV Env-binding antibody response, even though higher overall titers to the glycopeptide were elicited by the exponential and pump regimens. Antibody selectivity for intact glycan was, if anything, slightly better in the bolus-immunized animals.


Subject(s)
AIDS Vaccines/metabolism , Glycopeptides/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , Oligosaccharides/chemistry , Vaccines, Conjugate/metabolism , Animals , Antibodies, Neutralizing , Antibody Formation , Binding Sites , Glycosylation , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/urine , HIV Infections/prevention & control , Humans , Immunization , Mannosidases/metabolism , Oligosaccharides/urine , Protein Binding , Protein Conformation , Rabbits , Small Molecule Libraries/chemistry , Vaccination
19.
Nanoscale ; 11(39): 18464-18474, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31577313

ABSTRACT

While cells offer numerous inspiring examples in which membrane morphology and function are controlled by interactions with viruses or proteins, we still lack design principles for controlling membrane morphology in synthetic systems. With experiments and simulations, we show that spherical nanoparticles binding to lipid-bilayer membrane vesicles results in a remarkably rich set of collective morphologies that are controllable via the particle binding energy. We separately study cationic and anionic particles, where the adhesion is tuned by addition of oppositely charged lipids to the vesicles. When the binding energy is weak relative to a characteristic membrane-bending energy, vesicles adhere to one another and form a soft solid gel, a novel and useful platform for controlled release. With larger binding energy, a transition from partial to complete wrapping of the nanoparticles causes a remarkable vesicle destruction process culminating in rupture, nanoparticle-membrane tubules, and an apparent inversion of the vesicles. These findings help unify the diverse phenomena observed previously. They also open the door to a new class of vesicle-based, closed-cell gels that are more than 99% water and can encapsulate and release on demand, and show how to drive intentional membrane remodeling for shape-responsive systems.


Subject(s)
Lipid Bilayers/chemistry , Nanoparticles/chemistry , Gels/chemistry
20.
J Cell Biol ; 218(8): 2600-2618, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31253649

ABSTRACT

The activities of neuronal signaling receptors depend heavily on the maturation state of the endosomal compartments in which they reside. However, it remains unclear how the distribution of these compartments within the uniquely complex morphology of neurons is regulated and how this distribution itself affects signaling. Here, we identified mechanisms by which Sorting Nexin 16 (SNX16) controls neuronal endosomal maturation and distribution. We found that higher-order assembly of SNX16 via its coiled-coil (CC) domain drives membrane tubulation in vitro and endosome association in cells. In Drosophila melanogaster motor neurons, activation of Rab5 and CC-dependent self-association of SNX16 lead to its endosomal enrichment, accumulation in Rab5- and Rab7-positive tubulated compartments in the cell body, and concomitant depletion of SNX16-positive endosomes from the synapse. This results in accumulation of synaptic growth-promoting bone morphogenetic protein receptors in the cell body and correlates with increased synaptic growth. Our results indicate that Rab regulation of SNX16 assembly controls the endosomal distribution and signaling activities of receptors in neurons.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endosomes/metabolism , Motor Neurons/metabolism , Sorting Nexins/metabolism , Amino Acid Sequence , Animals , Bone Morphogenetic Protein Receptors/metabolism , Cell Body/metabolism , Drosophila Proteins/chemistry , Humans , Models, Biological , Mutant Proteins/metabolism , Neuromuscular Junction/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Domains , Protein Multimerization , Signal Transduction , Sorting Nexins/chemistry , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...