Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 200: 105844, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582571

ABSTRACT

Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 µM, 0.15 µM, and 0.025 µM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.


Subject(s)
Chlorpyrifos , Insecticides , Moths , Organothiophosphates , Paraoxon/analogs & derivatives , Pyrethrins , Animals , Insecticides/pharmacology , Insecticides/metabolism , Carboxylesterase/metabolism , Helicoverpa armigera , Pyrethrins/pharmacology , Pyrethrins/metabolism , Cholinesterases , Insecticide Resistance
2.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141015, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615986

ABSTRACT

The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 µM and Vmax, 0.95 µmol/min/mg) and AICAR (Km, 34.81 µM and Vmax, 0.56 µmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 µM and Vmax, 2.87 µmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 µM and 34.2 µM, respectively) compared to AICAR (Kd, 83.4 µM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.


Subject(s)
Aminoimidazole Carboxamide , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/chemistry , Aminoimidazole Carboxamide/metabolism , Aminoimidazole Carboxamide/pharmacology , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/chemistry , Molecular Docking Simulation , Ribonucleotides/metabolism , Ribonucleotides/chemistry , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Nucleotide Deaminases/metabolism , Nucleotide Deaminases/chemistry , Nucleotide Deaminases/genetics , Substrate Specificity , Cell Proliferation/drug effects , Hydroxymethyl and Formyl Transferases/metabolism , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/antagonists & inhibitors , Multienzyme Complexes
3.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490399

ABSTRACT

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Citrus , Citrus sinensis/metabolism , Carrier Proteins/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Citrus/metabolism
4.
Arch Biochem Biophys ; 753: 109888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232797

ABSTRACT

The haloacid dehalogenase superfamily implicated in bacterial pathogenesis comprises different enzymes having roles in many metabolic pathways. Staphylococcus lugdunensis, a Gram-positive bacterium, is an opportunistic human pathogen causing infections in the central nervous system, urinary tract, bones, peritoneum, systemic conditions and cutaneous infection. The haloacid dehalogenase superfamily proteins play a significant role in the pathogenicity of certain bacteria, facilitating invasion, survival, and proliferation within host cells. The genome of S. lugdunensis encodes more than ten proteins belonging to this superfamily. However, none of them have been characterized. The present work reports the characterization of one of the haloacid dehalogenase superfamily proteins (SLHAD1) from Staphylococcus lugdunensis. The functional analysis revealed that SLHAD1 is a metal-dependent acid phosphatase, which catalyzes the dephosphorylation of phosphorylated metabolites of cellular pathways, including glycolysis, gluconeogenesis, nucleotides, and thiamine metabolism. Based on the substrate specificity and genomic analysis, the physiological function of SLHAD1 in thiamine metabolism has been tentatively assigned. The crystal structure of SLHAD1, lacking 49 residues at the C-terminal, was determined at 1.7 Å resolution with a homodimer in the asymmetric unit. It was observed that SLHAD1 exhibited time-dependent cleavage at a specific point, occurring through a self-initiated process. A combination of bioinformatics, biochemical, biophysical, and structural studies explored unique features of SLHAD1. Overall, the study revealed a detailed characterization of a critical enzyme of the human pathogen Staphylococcus lugdunensis, associated with several life-threatening infections.


Subject(s)
Acid Phosphatase , Staphylococcus lugdunensis , Humans , Staphylococcus lugdunensis/metabolism , Hydrolases/chemistry , Bacteria , Thiamine
5.
3 Biotech ; 13(6): 175, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188291

ABSTRACT

Juvenile hormone (JH) plays pivotal roles in several critical developmental processes in insects, including metamorphosis and reproduction. JH-biosynthetic pathway enzymes are considered highly promising targets for discovering novel insecticides. The oxidation of farnesol to farnesal, catalysed by farnesol dehydrogenase (FDL), represents a rate-limiting step in JH biosynthesis. Here, we report farnesol dehydrogenase (HaFDL) from H. armigera as a promising insecticidal target. The inhibitory potential of natural substrate analogue geranylgeraniol (GGol) was tested in vitro, wherein it showed a high binding affinity (kd 595 µM) for HaFDL in isothermal titration calorimetry (ITC) and subsequently exhibited dose-dependent enzyme inhibition in GC-MS coupled qualitative enzyme inhibition assay. Moreover, the experimentally determined inhibitory activity of GGol was augmented by the in silico molecular docking simulation which showed that GGol formed a stable complex with HaFDL, occupied the active site pocket and interacted with key active site residues (Ser147 and Tyr162) as well as other residues that are crucial in determining the active site architecture. Further, the diet-incorporated oral feeding of GGol caused detrimental effects on larval growth and development, exhibiting a significantly reduced rate of larval weight gain (P < 0.01), aberrant pupal and adult morphogenesis, and a cumulative mortality of ~ 63%. To the best of our knowledge, the study presents the first report on evaluating GGol as a potential inhibitor for HaFDL. Overall, the findings revealed the suitability of HaFDL as a potential insecticidal target for the management H. armigera.

6.
J Biomol Struct Dyn ; 41(5): 1978-1987, 2023 03.
Article in English | MEDLINE | ID: mdl-35037838

ABSTRACT

Helicoverpa armigera (Ha), a polyphagous pest, causes significant damage to several crop plants, including cotton. The control of this cosmopolitan pest is largely challenging due to the development of resistance to existing management practices. The Juvenile Hormone (JH) plays a pivotal role in the life cycle of insects by regulating their morphogenetic and gonadotropic development. Hence, enzymes involved in JH biosynthesis are an attractive target for the development of selective insecticides. Farnesyl diphosphate synthase (FPPS), a member protein of (E)-prenyl-transferases, is one of the most crucial enzymes in the biosynthetic pathway of JHs. It catalyzes the condensation of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), forming farnesyl diphosphate (FPP), a precursor of JH. The study was designed to identify an effective small inhibitory molecule that could inhibit the activity of Helicoverpa armigera - FPPS (HaFPPS) for an effective pest control intervention. Therefore, a 3D model of FPPS protein was generated using homology modeling. The FooDB database library of small molecules was selected for virtual screening, following which binding affinities were evaluated using docking studies. Three top-scored molecules were analyzed for various pharmacophore properties. Further, molecular dynamics (MD) simulation analysis showed that the identified molecules (mitraphylline-ZINC1607834, chlorogenic acid-ZINC2138728 and llagate-ZINC3872446) had a reasonably acceptable binding affinity for HaFPPS and resulted in the formation of a stable HaFPPS-inhibitor(s) complex. The identified phytochemical molecules may be used as potent inhibitors of HaFPPS thus, paving the way for further developing environment-friendly insect growth regulator(s). Communicated by Ramaswamy H. Sarma.


Subject(s)
Geranyltranstransferase , Moths , Animals , Geranyltranstransferase/chemistry , Geranyltranstransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...