Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Comput Biol Med ; 178: 108691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905894

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aims to develop and evaluate NeuNN, a system based on convolutional neural networks (CNN) and generative adversarial networks (GAN) for the automatic identification of normal neutrophils and those containing several types of inclusions or showing hypogranulation. METHODS: From peripheral blood smears, a set of 5605 digital images was obtained with neutrophils belonging to seven categories: Normal neutrophils (NEU), Hypogranulated (HYP) or containing cryoglobulins (CRY), Döhle bodies (DB), Howell-Jolly body-like inclusions (HJBLI), Green-blue inclusions of death (GBI) and phagocytosed bacteria (BAC). The dataset utilized in this study has been made publicly available. The class of GBI was augmented using synthetic images generated by GAN. The NeuNN classification model is based on an EfficientNet-B7 architecture trained from scratch. RESULTS: NeuNN achieved an overall performance of 94.3% accuracy on the test data set. Performance metrics, including sensitivity, specificity, precision, F1-Score, Jaccard index, and Matthews correlation coefficient indicated overall values of 94%, 99.1%, 94.3%, 94.3%, 89.6%, and 93.6%, respectively. CONCLUSIONS: The proposed approach, combining data augmentation and classification techniques, allows for automated identification of morphological findings in neutrophils, such us inclusions or hypogranulation. The system can be used as a support tool for clinical pathologists to detect these specific abnormalities with clinical relevance.


Subject(s)
Deep Learning , Neutrophils , Humans , Cytoplasm/metabolism , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
2.
Comput Methods Programs Biomed ; 240: 107629, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37301181

ABSTRACT

BACKGROUND AND OBJECTIVES: Combining knowledge of clinical pathologists and deep learning models is a growing trend in morphological analysis of cells circulating in blood to add objectivity, accuracy, and speed in diagnosing hematological and non-hematological diseases. However, the variability in staining protocols across different laboratories can affect the color of images and performance of automatic recognition models. The objective of this work is to develop, train and evaluate a new system for the normalization of color staining of peripheral blood cell images, so that it transforms images from different centers to map the color staining of a reference center (RC) while preserving the structural morphological features. METHODS: The system has two modules, GAN1 and GAN2. GAN1 uses the PIX2PIX technique to fade original color images to an adaptive gray, while GAN2 transforms them into RGB normalized images. Both GANs have a similar structure, where the generator is a U-NET convolutional neural network with ResNet and the discriminator is a classifier with ResNet34 structure. Digitally stained images were evaluated using GAN metrics and histograms to assess the ability to modify color without altering cell morphology. The system was also evaluated as a pre-processing tool before cells undergo a classification process. For this purpose, a CNN classifier was designed for three classes: abnormal lymphocytes, blasts and reactive lymphocytes. RESULTS: Training of all GANs and the classifier was performed using RC images, while evaluations were conducted using images from four other centers. Classification tests were performed before and after applying the stain normalization system. The overall accuracy reached a similar value around 96% in both cases for the RC images, indicating the neutrality of the normalization model for the reference images. On the contrary, it was a significant improvement in the classification performance when applying the stain normalization to the other centers. Reactive lymphocytes were the most sensitive to stain normalization, with true positive rates (TPR) increasing from 46.3% - 66% for the original images to 81.2% - 97.2% after digital staining. Abnormal lymphocytes TPR ranged from 31.9% - 95.7% with original images to 83% - 100% with digitally stained images. Blast class showed TPR ranges of 90.3% - 94.4% and 94.4% - 100%, for original and stained images, respectively. CONCLUSIONS: The proposed GAN-based normalization staining approach improves the performance of classifiers with multicenter data sets by generating digitally stained images with a quality similar to the original images and adaptability to a reference staining standard. The system requires low computation cost and can help improve the performance of automatic recognition models in clinical settings.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Staining and Labeling , Blood Cells , Leukocytes
3.
Comput Methods Programs Biomed ; 229: 107314, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565666

ABSTRACT

BACKGROUND AND OBJECTIVES: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood. In general, well-annotated large image sets are needed to train the models to reach a desired classification performance. This is especially relevant when it comes to discerning between cell images in which morphological differences are subtle and when it comes to low prevalent diseases with the consequent difficulty in collecting cell images. The objective of this work is to develop, train and validate SyntheticCellGAN (SCG), a new system for the automatic generation of artificial images of white blood cells, maintaining morphological characteristics very close to real cells found in practice in clinical laboratories. METHODS: SCG is designed with two sequential generative adversarial networks. First, a Wasserstein structure is used to transform random noise vectors into low resolution images of basic mononuclear cells. Second, the concept of image-to-image translation is used to build specific models that transform the basic images into high-resolution final images with the realistic morphology of each cell type target: 1) the five groups of normal leukocytes (lymphocytes, monocytes, eosinophils, neutrophils and basophils); 2) atypical promyelocytes and hairy cells, which are two relevant cell types of complex morphology with low abundance in blood smears. RESULTS: The images of the SCG system are evaluated with four experimental tests. In the first test we evaluated the generated images with quantitative metrics for GANs. In the second test, morphological verification of the artificial images is performed by expert clinical pathologists with 100% accuracy. In the third test, two classifiers based on convolutional neural networks (CNN) previously trained with images of real cells are used. Two sets of artificial images of the SCG system are classified with an accuracy of 95.36% and 94%, respectively. In the fourth test, three CNN classifiers are trained with artificial images of the SCG system. Real cells are identified with an accuracy ranging from 87.7% to 100%. CONCLUSIONS: The SCG system has proven effective in creating images of all normal leukocytes and two low-prevalence cell classes associated with diseases such as acute promyelocyte leukemia and hairy cell leukemia. Once trained, the system requires low computational cost and can help augment high-quality image datasets to improve automatic recognition model training for clinical laboratory practice.


Subject(s)
Leukocytes , Neural Networks, Computer , Lymphocytes , Monocytes , Eosinophils , Image Processing, Computer-Assisted/methods
4.
Bioengineering (Basel) ; 9(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35621507

ABSTRACT

Laboratory medicine plays a fundamental role in the detection, diagnosis and management of COVID-19 infection. Recent observations of the morphology of cells circulating in blood found the presence of particular reactive lymphocytes (COVID-19 RL) in some of the infected patients and demonstrated that it was an indicator of a better prognosis of the disease. Visual morphological analysis is time consuming, requires smear review by expert clinical pathologists, and is prone to subjectivity. This paper presents a convolutional neural network system designed for automatic recognition of COVID-19 RL. It is based on the Xception71 structure and is trained using images of blood cells from real infected patients. An experimental study is carried out with a group of 92 individuals. The input for the system is a set of images selected by the clinical pathologist from the blood smear of a patient. The output is the prediction whether the patient belongs to the group associated with better prognosis of the disease. A threshold is obtained for the classification system to predict that the smear belongs to this group. With this threshold, the experimental test shows excellent performance metrics: 98.3% sensitivity and precision, 97.1% specificity, and 97.8% accuracy. The system does not require costly calculations and can potentially be integrated into clinical practice to assist clinical pathologists in a more objective smear review for early prognosis.

5.
J Clin Pathol ; 75(2): 104-111, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33310786

ABSTRACT

AIMS: Atypical lymphocytes circulating in blood have been reported in COVID-19 patients. This study aims to (1) analyse if patients with reactive lymphocytes (COVID-19 RL) show clinical or biological characteristics related to outcome; (2) develop an automatic system to recognise them in an objective way and (3) study their immunophenotype. METHODS: Clinical and laboratory findings in 36 COVID-19 patients were compared between those showing COVID-19 RL in blood (18) and those without (18). Blood samples were analysed in Advia2120i and stained with May Grünwald-Giemsa. Digital images were acquired in CellaVisionDM96. Convolutional neural networks (CNNs) were used to accurately recognise COVID-19 RL. Immunophenotypic study was performed throughflow cytometry. RESULTS: Neutrophils, D-dimer, procalcitonin, glomerular filtration rate and total protein values were higher in patients without COVID-19 RL (p<0.05) and four of these patients died. Haemoglobin and lymphocyte counts were higher (p<0.02) and no patients died in the group showing COVID-19 RL. COVID-19 RL showed a distinct deep blue cytoplasm with nucleus mostly in eccentric position. Through two sequential CNNs, they were automatically distinguished from normal lymphocytes and classical RL with sensitivity, specificity and overall accuracy values of 90.5%, 99.4% and 98.7%, respectively. Immunophenotypic analysis revealed COVID-19 RL are mostly activated effector memory CD4 and CD8 T cells. CONCLUSION: We found that COVID-19 RL are related to a better evolution and prognosis. They can be detected by morphology in the smear review, being the computerised approach proposed useful to enhance a more objective recognition. Their presence suggests an abundant production of virus-specific T cells, thus explaining the better outcome of patients showing these cells circulating in blood.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/immunology , Memory T Cells/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , Case-Control Studies , Clinical Decision Rules , Disease Progression , Female , Flow Cytometry , Humans , Immunophenotyping , Male , Memory T Cells/immunology , Middle Aged , Neural Networks, Computer , Prognosis , Sensitivity and Specificity , Spain/epidemiology
6.
J Pathol ; 257(1): 1-4, 2022 05.
Article in English | MEDLINE | ID: mdl-34928523

ABSTRACT

The use of artificial intelligence methods in the image-based diagnostic assessment of hematological diseases is a growing trend in recent years. In these methods, the selection of quantitative features that describe cytological characteristics plays a key role. They are expected to add objectivity and consistency among observers to the geometric, color, or texture variables that pathologists usually interpret from visual inspection. In a recent paper in The Journal of Pathology, El Hussein, Chen et al proposed an algorithmic procedure to assist pathologists in the diagnostic evaluation of chronic lymphocytic leukemia (CLL) progression using whole-slide image analysis of tissue samples. The core of the procedure was a set of quantitative descriptors (biomarkers) calculated from the segmentation of cell nuclei, which was performed using a convolutional neural network. These biomarkers were based on clinical practice and easily calculated with reproducible tools. They were used as input to a machine learning algorithm that provided classification in one of the stages of CLL progression. Works like this can contribute to the integration into the workflow of clinical laboratories of automated diagnostic systems based on the morphological analysis of histological slides and blood smears. © 2021 The Pathological Society of Great Britain and Ireland.


Subject(s)
Artificial Intelligence , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Image Processing, Computer-Assisted , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Machine Learning , Neural Networks, Computer
7.
Comput Biol Med ; 136: 104680, 2021 09.
Article in English | MEDLINE | ID: mdl-34329861

ABSTRACT

Malaria is a serious disease responsible for thousands of deaths each year. Many efforts have been made to aid in the diagnosis of malaria using machine learning techniques, but to date, the presence of other elements that may interfere with the recognition of malaria has not been considered. We have developed the first deep learning model using convolutional neural networks capable of differentiating malaria-infected red blood cells from not only normal erythrocytes but also erythrocytes with other types of inclusions. 6415 images of red blood cells were segmented from digital images of 53 peripheral blood smears using thresholding and watershed transformation techniques. These images were used to train a VGG-16 architecture using transfer learning. Using an independent test set of 23 smears, this model was 99.5% accurate in classifying malaria parasites and other red blood cell inclusions. This model also exhibited sensitivity and specificity values of 100% and 91.7%, respectively, classifying a complete smear as infected or not infected. Our model represents a promising advance for automation in the identification of malaria-infected patients. The differentiation between malaria parasites and other red blood cell inclusions demonstrates the potential utility of our model in a real work environment.


Subject(s)
Malaria , Neural Networks, Computer , Erythrocytes , Humans
8.
Comput Biol Med ; 134: 104479, 2021 07.
Article in English | MEDLINE | ID: mdl-34010795

ABSTRACT

BACKGROUND: Dysplastic neutrophils commonly show at least 2/3 reduction of the content of cytoplasmic granules by morphologic examination. Recognition of less granulated dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability. To tackle this problem, we proposed a new deep learning model (DysplasiaNet) able to automatically recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood. METHODS: Eight models were generated by varying convolutional blocks, number of layer nodes and fully connected layers. Each model was trained for 20 epochs. The five most accurate models were selected for a second stage, being trained again from scratch for 100 epochs. After training, cut-off values were calculated for a granularity score that discerns between normal and dysplastic neutrophils. Furthermore, a threshold value was obtained to quantify the minimum proportion of dysplastic neutrophils in the smear to consider that the patient might have a myelodysplastic syndrome (MDS). The final selected model was the one with the highest accuracy (95.5%). RESULTS: We performed a final proof of concept with new patients not involved in previous steps. We reported 95.5% sensitivity, 94.3% specificity, 94% precision, and a global accuracy of 94.85%. CONCLUSIONS: The primary contribution of this work is a predictive model for the automatic recognition in an objective way of hypogranulated neutrophils in peripheral blood smears. We envision the utility of the model implemented as an evaluation tool for MDS diagnosis integrated in the clinical laboratory workflow.


Subject(s)
Myelodysplastic Syndromes , Neutrophils , Humans , Myelodysplastic Syndromes/diagnosis , Neural Networks, Computer , Observer Variation
9.
Comput Methods Programs Biomed ; 202: 105999, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33618145

ABSTRACT

BACKGROUND AND OBJECTIVES: Morphological differentiation among blasts circulating in blood in acute leukaemia is challenging. Artificial intelligence decision support systems hold substantial promise as part of clinical practise in detecting haematological malignancy. This study aims to develop a deep learning-based system to predict the diagnosis of acute leukaemia using blood cell images. METHODS: A set of 731 blood smears containing 16,450 single-cell images was analysed from 100 healthy controls, 191 patients with viral infections and 148 with acute leukaemia. Training and testing sets were arranged with 85% and 15% of these smears, respectively. To find the best architecture for acute leukaemia classification VGG16, ResNet101, DenseNet121 and SENet154 were evaluated. Fine-tuning was implemented to these pre-trained CNNs to adapt their layers to our data. Once the best architecture was chosen, a system with two modules working sequentially was configured (ALNet). The first module recognised abnormal promyelocytes among other mononuclear blood cell images, such as lymphocytes, monocytes, reactive lymphocytes and blasts. The second distinguished if blasts were myeloid or lymphoid lineage. The final strategy was to predict patients' initial diagnosis of acute leukaemia lineage using the blood smear review. ALNet was assessed with smears of the testing set. RESULTS: ALNet provided the correct diagnostic prediction of all patients with promyelocytic and myeloid leukaemia. Sensitivity, specificity and precision values of 100%, 92.3% and 93.7%, respectively, were obtained for myeloid leukaemia. Regarding lymphoid leukaemia, a sensitivity of 89% and specificity and precision values of 100% were obtained. CONCLUSIONS: ALNet is a predictive model designed with two serially connected convolutional networks. It is proposed to assist clinical pathologists in the diagnosis of acute leukaemia during the blood smear review. It has been proved to distinguish neoplastic (leukaemia) and non-neoplastic (infections) diseases, as well as recognise the leukaemia lineage.


Subject(s)
Deep Learning , Leukemia, Myeloid, Acute , Artificial Intelligence , Blood Cells , Humans , Leukemia, Myeloid, Acute/diagnosis , Neural Networks, Computer
10.
Entropy (Basel) ; 22(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-33286429

ABSTRACT

Malaria is an endemic life-threating disease caused by the unicellular protozoan parasites of the genus Plasmodium. Confirming the presence of parasites early in all malaria cases ensures species-specific antimalarial treatment, reducing the mortality rate, and points to other illnesses in negative cases. However, the gold standard remains the light microscopy of May-Grünwald-Giemsa (MGG)-stained thin and thick peripheral blood (PB) films. This is a time-consuming procedure, dependent on a pathologist's skills, meaning that healthcare providers may encounter difficulty in diagnosing malaria in places where it is not endemic. This work presents a novel three-stage pipeline to (1) segment erythrocytes, (2) crop and mask them, and (3) classify them into malaria infected or not. The first and third steps involved the design, training, validation and testing of a Segmentation Neural Network and a Convolutional Neural Network from scratch using a Graphic Processing Unit. Segmentation achieved a global accuracy of 93.72% over the test set and the specificity for malaria detection in red blood cells (RBCs) was 87.04%. This work shows the potential that deep learning has in the digital pathology field and opens the way for future improvements, as well as for broadening the use of the created networks.

11.
ISA Trans ; 105: 240-255, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32446497

ABSTRACT

This article proposes a recent Adaptive-Predictive (AP) control technique applied to a DC-DC buck converter. This converter topology has a wide range of applications in the current electronic and electrical systems that demand an efficient use of low bus voltage and specific requirements in load current consumption. Nevertheless, this converter, and in general any DC-DC converter topology, presents a control challenge due to its nonlinear nature. Hence, in this article, it is proposed an adaptive-predictive control scheme that has low implementation complexity and improves the buck converter performance since it provides a fast response of the output voltage. Moreover, the output is adequately regulated even when the system is subjected to perturbations in the reference voltage, in the input voltage, in the load or in the converter parameters that may be seen as faults in the system. On the other hand, one of the main contributions of the proposed control technique with respect to other controllers is that the AP control scheme allows to on-line infer the parametric status of the plant thanks to its adaptive stage. In addition, a dynamic Hysteresis Modulator (HM) is properly inserted in the control strategy to improve the dynamic behavior of the Adaptive Mechanism (AM), and in general, of the entire closed-loop control performance. To validate the effectiveness of the control design, a wide range of numerical experiments are carried out by using Matlab/Simulink. Finally, the developed control technique was implemented in a benchmark experimental platform. According to the experimental results, the proposed predictive control is suitable for real scenarios in the power electronics applications.

12.
Data Brief ; 30: 105474, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32346559

ABSTRACT

This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking.

13.
J Clin Pathol ; 73(10): 665-670, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32179558

ABSTRACT

AIMS: Morphological recognition of red blood cells infected with malaria parasites is an important task in the laboratory practice. Nowadays, there is a lack of specific automated systems able to differentiate malaria with respect to other red blood cell inclusions. This study aims to develop a machine learning approach able to discriminate parasitised erythrocytes not only from normal, but also from other erythrocyte inclusions, such as Howell-Jolly and Pappenheimer bodies, basophilic stippling as well as platelets overlying red blood cells. METHODS: A total of 15 660 erythrocyte images from 87 smears were segmented using histogram thresholding and watershed techniques, which allowed the extraction of 2852 colour and texture features. Dataset was split into a training and assessment sets. Training set was used to develop the whole system, in which several classification approaches were compared with obtain the most accurate recognition. Afterwards, the recognition system was evaluated with the assessment set, performing two steps: (1) classifying each individual cell image to assess the system's recognition ability and (2) analysing whole smears to obtain a malaria infection diagnosis. RESULTS: The selection of the best classification approach resulted in a final sequential system with an accuracy of 97.7% for the six groups of red blood cell inclusions. The ability of the system to detect patients infected with malaria showed a sensitivity and specificity of 100% and 90%, respectively. CONCLUSIONS: The proposed method achieves a high diagnostic performance in the recognition of red blood cell infected with malaria, along with other frequent erythrocyte inclusions.


Subject(s)
Erythrocytes/parasitology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Malaria/diagnostic imaging , Humans , Inclusion Bodies/parasitology , Malaria/blood , Microscopy
14.
Comput Methods Programs Biomed ; 180: 105020, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31425939

ABSTRACT

BACKGROUND AND OBJECTIVES: Morphological analysis is the starting point for the diagnostic approach of more than 80% of hematological diseases. However, the morphological differentiation among different types of normal and abnormal peripheral blood cells is a difficult task that requires experience and skills. Therefore, the paper proposes a system for the automatic classification of eight groups of peripheral blood cells with high accuracy by means of a transfer learning approach using convolutional neural networks. With this new approach, it is not necessary to implement image segmentation, the feature extraction becomes automatic and existing models can be fine-tuned to obtain specific classifiers. METHODS: A dataset of 17,092 images of eight classes of normal peripheral blood cells was acquired using the CellaVision DM96 analyzer. All images were identified by pathologists as the ground truth to train a model to classify different cell types: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (myelocytes, metamyelocytes and promyelocytes), erythroblasts and platelets. Two designs were performed based on two architectures of convolutional neural networks, Vgg-16 and Inceptionv3. In the first case, the networks were used as feature extractors and these features were used to train a support vector machine classifier. In the second case, the same networks were fine-tuned with our dataset to obtain two end-to-end models for classification of the eight classes of blood cells. RESULTS: In the first case, the experimental test accuracies obtained were 86% and 90% when extracting features with Vgg-16 and Inceptionv3, respectively. On the other hand, in the fine-tuning experiment, global accuracy values of 96% and 95% were obtained using Vgg-16 and Inceptionv3, respectively. All the models were trained and tested using Keras and Tensorflow with a Nvidia Titan XP Graphics Processing Unit. CONCLUSIONS: The main contribution of this paper is a classification scheme involving a convolutional neural network trained to discriminate among eight classes of cells circulating in peripheral blood. Starting from a state-of-the-art general architecture, we have established a fine-tuning procedure to develop an end-to-end classifier trained using a dataset with over 17,000 cell images obtained from clinical practice. The performance obtained when testing the system has been truly satisfactory, the values of precision, sensitivity, and specificity being excellent. To summarize, the best overall classification accuracy has been 96.2%.


Subject(s)
Blood Cells , Neural Networks, Computer , Pattern Recognition, Automated , Deep Learning , Humans , Image Processing, Computer-Assisted/methods
15.
J Clin Pathol ; 72(11): 755-761, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31256009

ABSTRACT

AIMS: Morphological differentiation among different blast cell lineages is a difficult task and there is a lack of automated analysers able to recognise these abnormal cells. This study aims to develop a machine learning approach to predict the diagnosis of acute leukaemia using peripheral blood (PB) images. METHODS: A set of 442 smears was analysed from 206 patients. It was split into a training set with 75% of these smears and a testing set with the remaining 25%. Colour clustering and mathematical morphology were used to segment cell images, which allowed the extraction of 2,867 geometric, colour and texture features. Several classification techniques were studied to obtain the most accurate classification method. Afterwards, the classifier was assessed with the images of the testing set. The final strategy was to predict the patient's diagnosis using the PB smear, and the final assessment was done with the cell images of the smears of the testing set. RESULTS: The highest classification accuracy was achieved with the selection of 700 features with linear discriminant analysis. The overall classification accuracy for the six groups of cell types was 85.8%, while the overall classification accuracy for individual smears was 94% as compared with the true confirmed diagnosis. CONCLUSIONS: The proposed method achieves a high diagnostic precision in the recognition of different types of blast cells among other mononuclear cells circulating in blood. It is the first encouraging step towards the idea of being a diagnostic support tool in the future.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Leukemia/pathology , Leukocytes/pathology , Machine Learning , Pattern Recognition, Automated/methods , Staining and Labeling/methods , Acute Disease , Blood Specimen Collection , Cell Lineage , Diagnosis, Differential , Humans , Leukemia/blood , Leukemia/classification , Predictive Value of Tests , Reproducibility of Results
16.
Am J Clin Pathol ; 152(1): 74-85, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30989170

ABSTRACT

OBJECTIVES: We aimed to find descriptors to identify chronic lymphocytic leukemia (CLL), Sézary, granular, and villous lymphocytes among normal and abnormal lymphocytes in peripheral blood. METHODS: Image analysis was applied to 768 images from 15 different types of lymphoid cells and monocytes to determine four discriminant descriptors. For each descriptor, numerical scales were obtained using 627 images from 79 patients. An assessment of the four descriptors was performed using smears from 209 new patients. RESULTS: Cyan correlation of the nucleus identified clumped chromatin, and standard deviation of the granulometric curve of the cyan of the nucleus was specific for cerebriform chromatin. Skewness of the histogram of the u component of the cytoplasm identified cytoplasmic granulation. Hairiness showed specificity for cytoplasmic villi. In the assessment, 96% of the smears were correctly classified. CONCLUSIONS: The quantitative descriptors obtained through image analysis may contribute to the morphologic identification of the abnormal lymphoid cells considered in this article.


Subject(s)
Lymphocytes/pathology , Monocytes/pathology , Cell Nucleus/pathology , Chromatin/pathology , Cytoplasm/pathology , Humans , Image Processing, Computer-Assisted
17.
Med Biol Eng Comput ; 57(6): 1265-1283, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30730028

ABSTRACT

Current computerized image systems are able to recognize normal blood cells in peripheral blood, but fail with abnormal cells like the classes of lymphocytes associated to lymphomas. The main challenge lies in the subtle differences in morphologic characteristics among these classes, which requires a refined segmentation. A new efficient segmentation framework has been developed, which uses the image color information through fuzzy clustering of different color components and the application of the watershed transformation with markers. The final result is the separation of three regions of interest: nucleus, entire cell, and peripheral zone around the cell. Segmentation of this zone is crucial to extract a new feature to identify cells with hair-like projections. The segmentation is validated, using a database of 4758 cell images with normal, reactive lymphocytes and five types of malignant lymphoid cells from blood smears of 105 patients, in two ways: (1) the efficiency in the accurate separation of the regions of interest, which is 92.24%, and (2) the accuracy of a classification system implemented over the segmented cells, which is 91.54%. In conclusion, the proposed segmentation framework is suitable to distinguish among abnormal blood cells with subtile color and spatial similarities. Graphical Abstract The segmentation framework uses the image color information through fuzzy clustering of different color components and the application of the watershed transformation with markers (Top). The final result is the separation of three regions of interest: nucleus, entire cell, and peripheral zone around the cell. The procedure is also validated by the implementation of a system to automatically classify different types of abnormal blood cells (Bottom).


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Leukemia/blood , Lymphocytes/pathology , Lymphoma/blood , Automation , Cell Nucleus/pathology , Cluster Analysis , Color , Humans , Leukemia/pathology , Lymphoma/pathology
18.
J Clin Pathol ; 70(12): 1038-1048, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28611188

ABSTRACT

AIMS: This work aims to propose a set of quantitative features through digital image analysis for significant morphological qualitative features of different cells for an objective discrimination among reactive, abnormal and blast lymphoid cells. METHODS: Abnormal lymphoid cells circulating in peripheral blood in chronic lymphocytic leukaemia, B-prolymphocytic leukaemia, hairy cell leukaemia, splenic marginal zone lymphoma, mantle cell lymphoma, follicular lymphoma, T-prolymphocytic leukaemia, T large granular lymphocytic leukaemia and Sézary syndrome, normal, reactive and blast lymphoid cells were included. From 325 patients, 12 574 cell images were obtained and 2676 features (27 geometric and 2649 related to colour and texture) were extracted and analysed. RESULTS: We analysed the 20 most relevant features for the morphological differentiation of the 12 lymphoid cell groups under study. Most of them showed significant differences: 19 comparing follicular and mantle cells, 18 for blast and reactive cells, 17 for Sézary cells and T prolymphocytes and 16 for B and T prolymphocytes and 16 for villous lymphocytes. Moreover, a total of five quantitative features were significant for the discrimination among reactive and the set of abnormal lymphoid cells included. CONCLUSIONS: Image analysis may assist in quantifying cell morphology turning qualitative data into quantitative values. New cytological variables were established based on geometric and colour/texture features to contribute to a more accurate and objective morphological assessment of lymphoid cells and their association with flow cytometry methods may be interesting to explore in the next future.


Subject(s)
Hematologic Neoplasms/pathology , Image Interpretation, Computer-Assisted/methods , Lymphocytes/pathology , Microscopy/methods , Automation, Laboratory , Case-Control Studies , Diagnosis, Differential , Hematologic Neoplasms/blood , Humans , Pattern Recognition, Automated , Predictive Value of Tests
19.
J Clin Lab Anal ; 31(2)2017 Mar.
Article in English | MEDLINE | ID: mdl-27427422

ABSTRACT

BACKGROUND: Automated peripheral blood (PB) image analyzers usually underestimate the total number of blast cells, mixing them up with reactive or normal lymphocytes. Therefore, they are not able to discriminate between myeloid or lymphoid blast cell lineages. The objective of the proposed work is to achieve automatic discrimination of reactive lymphoid cells (RLC), lymphoid and myeloid blast cells and to obtain their morphologic patterns through feature analysis. METHODS: In the training stage, a set of 696 blood cell images was selected in 32 patients (myeloid acute leukemia, lymphoid precursor neoplasms and viral or other infections). For classification, we used support vector machines, testing different combinations of feature categories and feature selection techniques. Further, a validation was implemented using the selected features over 220 images from 15 new patients (five corresponding to each category). RESULTS: Best discrimination accuracy in the training was obtained with feature selection from the whole feature set (90.1%). We selected 60 features, showing significant differences (P < 0.001) in the mean values of the different cell groups. Nucleus-cytoplasm ratio was the most important feature for the cell classification, and color-texture features from the cytoplasm were also important. In the validation stage, the overall classification accuracy and the true-positive rates for RLC, myeloid and lymphoid blast cells were 80%, 85%, 82% and 74%, respectively. CONCLUSION: The methodology appears to be able to recognize reactive lymphocytes well, especially between reactive lymphocytes and lymphoblasts.


Subject(s)
Image Cytometry/instrumentation , Image Processing, Computer-Assisted/instrumentation , Leukemia, Myeloid, Acute/diagnostic imaging , Lymphocytes/pathology , Myeloid Cells/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnostic imaging , Cell Nucleus/pathology , Cytoplasm/pathology , Humans , Image Cytometry/methods , Image Processing, Computer-Assisted/methods , Lymphocytes/classification , Myeloid Cells/classification , Support Vector Machine
20.
Am J Clin Pathol ; 143(2): 168-76; quiz 305, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25596242

ABSTRACT

OBJECTIVES: The objective was the development of a method for the automatic recognition of different types of atypical lymphoid cells. METHODS: In the method development, a training set (TS) of 1,500 lymphoid cell images from peripheral blood was used. To segment the images, we used clustering of color components and watershed transformation. In total, 113 features were extracted for lymphocyte recognition by linear discriminant analysis (LDA) with a 10-fold cross-validation over the TS. Then, a new validation set (VS) of 150 images was used, performing two steps: (1) tuning the LDA classifier using the TS and (2) classifying the VS in the different lymphoid cell types. RESULTS: The segmentation algorithm was very effective in separating the cytoplasm, nucleus, and peripheral zone around the cell. From them, descriptive features were extracted and used to recognize the different lymphoid cells. The accuracy for the classification in the TS was 98.07%. The precision, sensitivity, and specificity values were above 99.7%, 97.5%, and 98.6%, respectively. The accuracy of the classification in the VS was 85.33%. CONCLUSIONS: The method reaches a high precision in the recognition of five different types of lymphoid cells and could allow for the design of a diagnosis support tool in the future.


Subject(s)
Algorithms , Cytodiagnosis/methods , Hematologic Neoplasms/diagnosis , Lymphocytes/pathology , Pattern Recognition, Automated/methods , Hematology/methods , Humans , Image Interpretation, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...