Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 897, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050516

ABSTRACT

Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.


Subject(s)
Epigenesis, Genetic , Histocompatibility Antigens Class I , Prostatic Neoplasms , CD8-Positive T-Lymphocytes/metabolism , Chromatin/genetics , DNA Methylation , Epigenomics , HLA Antigens , Histocompatibility Antigens Class I/genetics , Histone Deacetylases/genetics , Humans , Lysine/metabolism , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
2.
Clin Epigenetics ; 14(1): 37, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272673

ABSTRACT

BACKGROUND: DNA methylation alterations have emerged as hallmarks of cancer and have been proposed as screening, prognostic, and predictive biomarkers. Traditional approaches for methylation analysis have relied on bisulfite conversion of DNA, which can damage DNA and is not suitable for targeted gene analysis in low-input samples. Here, we have adapted methyl-CpG-binding domain protein 2 (MBD2)-based DNA enrichment for use on a semi-automated exclusion-based sample preparation (ESP) platform for robust and scalable enrichment of methylated DNA from low-input samples, called SEEMLIS. RESULTS: We show that combining methylation-sensitive enzyme digestion with ESP-based MBD2 enrichment allows for single gene analysis with high sensitivity for GSTP1 in highly impure, heterogenous samples. We also show that ESP-based MBD2 enrichment coupled with targeted pre-amplification allows for analysis of multiple genes with sensitivities approaching the single cell level in pure samples for GSTP1 and RASSF1 and sensitivity down to 14 cells for these genes in highly impure samples. Finally, we demonstrate the potential clinical utility of SEEMLIS by successful detection of methylated gene signatures in circulating tumor cells (CTCs) from patients with prostate cancer with varying CTC number and sample purity. CONCLUSIONS: SEEMLIS is a robust assay for targeted DNA methylation analysis in low-input samples, with flexibility at multiple steps. We demonstrate the feasibility of this assay to analyze DNA methylation in prostate cancer cells using CTCs from patients with prostate cancer as a real-world example of a low-input analyte of clinical importance. In summary, this novel assay provides a platform for determining methylation signatures in rare cell populations with broad implications for research as well as clinical applications.


Subject(s)
DNA Methylation , Prostatic Neoplasms , CpG Islands , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glutathione S-Transferase pi/genetics , Humans , Male , Prognosis , Prostatic Neoplasms/pathology
3.
Med Oncol ; 38(11): 135, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581895

ABSTRACT

Prostate Cancer (PC) is a disease with remarkable tumor heterogeneity that often manifests in significant intra-patient variability with regards to clinical outcomes and treatment response. Commonly available PC cell lines do not accurately reflect the complexity of this disease and there is critical need for development of new models to recapitulate the intricate hierarchy of tumor pathogenesis. In current study, we established ex vivo primary patient-derived cancer organoid (PDCO) cultures from prostatectomy specimens of patients with locally advanced PC. We then performed a comprehensive multi-parameter characterization of the cellular composition utilizing a novel approach for live-cell staining and direct imaging in the integrated microfluidic Stacks device. Using orthogonal flow cytometry analysis, we demonstrate that primary PDCOs maintain distinct subsets of epithelial cells throughout culture and that these cells conserve expression of androgen receptor (AR)-related elements. Furthermore, to confirm the tumor-origin of the PDCOs we have analyzed the expression of PC-associated epigenetic biomarkers including promoter methylation of the GSTP1, RASSF1 and APC and RARb genes by employing a novel microfluidic rare-event screening protocol. These results demonstrate that this ex vivo PDCO model recapitulates the complexity of the epithelial tumor microenvironment of multifocal PC using orthogonal analyses. Furthermore, we propose to leverage the Stacks microfluidic device as a high-throughput, translational platform to interrogate phenotypic and molecular endpoints with the capacity to incorporate a complex tumor microenvironment.


Subject(s)
Organoids/physiology , Prostatic Neoplasms/pathology , Receptors, Androgen/physiology , Cell Line, Tumor , Humans , Hyaluronan Receptors/analysis , Lab-On-A-Chip Devices , Male , Organoids/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Signal Transduction/physiology , Tumor Microenvironment
4.
Mol Oncol ; 15(9): 2330-2344, 2021 09.
Article in English | MEDLINE | ID: mdl-33604999

ABSTRACT

Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC. This study employed ccRCC-specific markers, CAIX and CAXII, to identify circulating tumor cells (CTC) from patients with metastatic ccRCC. Distinct subtypes of ccRCC CTCs were evaluated for PD-L1 and HLA-I expression and correlated with patient response to therapy. CTC enumeration and expression of PD-L1 and HLA-I correlated with disease progression and treatment response, respectively. Longitudinal evaluation of a subset of patients demonstrated potential for CTC enumeration to serve as a pharmacodynamic biomarker. Further evaluation of phenotypic heterogeneity among CTCs is needed to better understand the clinical utility of this new biomarker.


Subject(s)
Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/diagnosis , Neoplastic Cells, Circulating , Adult , Aged , B7-H1 Antigen/blood , Biomarkers, Tumor/blood , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Histocompatibility Antigens Class I/blood , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/pathology , Liquid Biopsy , Male , Middle Aged , Neoplasm Metastasis
5.
Clin Cancer Res ; 26(16): 4349-4359, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32439698

ABSTRACT

PURPOSE: Radiation and cetuximab are therapeutics used in management of head and neck squamous cell carcinoma (HNSCC). Despite clinical success with these modalities, development of both intrinsic and acquired resistance is an emerging problem in the management of this disease. The purpose of this study was to investigate signaling of the receptor tyrosine kinase AXL in resistance to radiation and cetuximab treatment. EXPERIMENTAL DESIGN: To study AXL signaling in the context of treatment-resistant HNSCC, we used patient-derived xenografts (PDXs) implanted into mice and evaluated the tumor response to AXL inhibition in combination with cetuximab or radiation treatment. To identify molecular mechanisms of how AXL signaling leads to resistance, three tyrosine residues of AXL (Y779, Y821, Y866) were mutated and examined for their sensitivity to cetuximab and/or radiation. Furthermore, reverse phase protein array (RPPA) was employed to analyze the proteomic architecture of signaling pathways in these genetically altered cell lines. RESULTS: Treatment of cetuximab- and radiation-resistant PDXs with AXL inhibitor R428 was sufficient to overcome resistance. RPPA analysis revealed that such resistance emanates from signaling of tyrosine 821 of AXL via the tyrosine kinase c-ABL. In addition, inhibition of c-ABL signaling resensitized cells and tumors to cetuximab or radiotherapy even leading to complete tumor regression without recurrence in head and neck cancer models. CONCLUSIONS: Collectively, the studies presented herein suggest that tyrosine 821 of AXL mediates resistance to cetuximab by activation of c-ABL kinase in HNSCC and that targeting of both EGFR and c-ABL leads to a robust antitumor response.


Subject(s)
Cetuximab/pharmacology , Genes, abl/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Animals , Cell Line, Tumor , Cetuximab/adverse effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Mice , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Proteomics , Radiation Tolerance/genetics , Signal Transduction/drug effects , Signal Transduction/radiation effects , Tyrosine/genetics , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
6.
Semin Cell Dev Biol ; 50: 153-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26808665

ABSTRACT

Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.


Subject(s)
Adaptation, Physiological , Antibodies/therapeutic use , Animals , ErbB Receptors/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...