Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Geobiology ; 15(5): 690-703, 2017 09.
Article in English | MEDLINE | ID: mdl-28452176

ABSTRACT

Pyrite (FeS2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals.


Subject(s)
Iron/metabolism , Ralstonia/metabolism , Rhizobium/metabolism , Sulfides/metabolism , Aerobiosis , Ferric Compounds/metabolism , Hydrogen-Ion Concentration , Iron/chemistry , Oxidation-Reduction , Ralstonia/genetics , Ralstonia/isolation & purification , Rhizobium/genetics , Rhizobium/isolation & purification , Sulfides/chemistry
2.
Geobiology ; 14(3): 255-75, 2016 May.
Article in English | MEDLINE | ID: mdl-26750514

ABSTRACT

Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers the first detailed insight into how DIR may impact the Fe geochemistry and isotope composition of a Fe-rich, circumneutral pH geothermal environment.


Subject(s)
Bacteria/metabolism , Ferric Compounds/metabolism , Hot Springs/microbiology , Bacteria/classification , Oxidation-Reduction , Parks, Recreational , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Wyoming
3.
Geobiology ; 9(3): 205-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21504536

ABSTRACT

The largest Fe isotope excursion yet measured in marine sedimentary rocks occurs in shales, carbonates, and banded iron formations of Neoarchaean and Paleoproterozoic age. The results of field and laboratory studies suggest a potential role for microbial dissimilatory iron reduction (DIR) in producing this excursion. However, most experimental studies of Fe isotope fractionation during DIR have been conducted in simple geochemical systems, using pure Fe(III) oxide substrates that are not direct analogues to phases likely to have been present in Precambrian marine environments. In this study, Fe isotope fractionation was investigated during microbial reduction of an amorphous Fe(III) oxide-silica coprecipitate in anoxic, high-silica, low-sulphate artificial Archaean seawater at 30 °C to determine if such conditions alter the extent of reduction or isotopic fractionations relative to those observed in simple systems. The Fe(III)-Si coprecipitate was highly reducible (c. 80% reduction) in the presence of excess acetate. The coprecipitate did not undergo phase conversion (e.g. to green rust, magnetite or siderite) during reduction. Iron isotope fractionations suggest that rapid and near-complete isotope exchange took place among all Fe(II) and Fe(III) components, in contrast to previous work on goethite and hematite, where exchange was limited to the outer few atom layers of the substrate. Large quantities of low-δ(56)Fe Fe(II) (aqueous and solid phase) were produced during reduction of the Fe(III)-Si coprecipitate. These findings shed new light on DIR as a mechanism for producing Fe isotope variations observed in Neoarchaean and Paleoproterozoic marine sedimentary rocks.


Subject(s)
Archaea/metabolism , Iron/metabolism , Geologic Sediments/analysis , Iron/analysis , Iron Isotopes/analysis , Iron Isotopes/metabolism , Oxidation-Reduction , Silicon Dioxide/analysis , Silicon Dioxide/metabolism
4.
Geobiology ; 8(3): 197-208, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20374296

ABSTRACT

The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)(am)] that allow dissimilatory iron reduction (DIR) to predominate over Fe-S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. delta(56)Fe values for bulk HCl- and HF-extractable Fe were approximately 0. These near-zero bulk delta(56)Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero delta(56)Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (delta(56)Fe approximately -1.5 to -0.5 per thousand) aqueous Fe(II) coupled to partial reduction of Fe(III)(am) by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)(am) are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)(am) of approximately -2 per thousand. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-delta(56)Fe minerals during BIF genesis.


Subject(s)
Ferrous Compounds/metabolism , Geologic Sediments/microbiology , Iron Isotopes/metabolism , California , Ferric Compounds/analysis , Geologic Sediments/chemistry , Oxidation-Reduction , Sulfur/analysis
5.
Water Res ; 38(10): 2499-504, 2004 May.
Article in English | MEDLINE | ID: mdl-15159153

ABSTRACT

The sorption kinetics of the divalent metals Zn, Co, Ni, and Cd to hematite were studied in single sorbate systems with high sorbate/sorbent ratios (from 1.67 to 3.33mol sorbate/mol sorption sites) in 10mM Na-piperazine N,N'-bis 2-ethane sulfonic acid (Na-PIPES) solution at pH 6.8. The experimental data showed a rapid initial sorption (half-time about 1min) followed by slower sorption that continued for 1-5 days. The sequence of fast to slow sorption kinetics was modeled by slow inner-sphere (IS) complexation in equilibrium with outer-sphere (OS) complexes. Although the OS reaction was fast and considered to be in equilibrium, the extent of OS complexation changed over time due to increased surface potential from the IS complexes. For example, the model showed that the dimensionless OS complexation function, K(os), decreased from 0.014 initially to 0.0016 at steady state due to sorption of 4x10(-5)M Zn(II) to 2gL(-1) hematite. Sorption rate constants, k(ads), for the various divalent metals ranged from 6.1 to 82.5M(-1)s(-1). Desorption rate constants, k(des), ranged from 5.2x10(-7) to 6.7x10(-5)s(-1). This study suggests that the conversion from OS to IS complex was the rate-determining step for the sorption of divalent metals on crystalline adsorbents.


Subject(s)
Ferric Compounds/chemistry , Metals, Heavy/chemistry , Water Purification/methods , Adsorption , Cations, Divalent , Chlorine/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Sulfites/chemistry , Sulfonic Acids/chemistry , Water Pollutants/isolation & purification
6.
FEMS Microbiol Ecol ; 49(1): 151-62, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-19712393

ABSTRACT

Pertechnetate ion [Tc(VII)O(4) (-)] reduction rate was determined in core samples from a shallow sandy aquifer located on the US Atlantic Coastal Plain. The aquifer is generally low in dissolved O(2) (<1 mg L(-1)) and composed of weakly indurated late Pleistocene sediments differing markedly in physicochemical properties. Thermodynamic calculations, X-ray absorption spectroscopy and statistical analyses were used to establish the dominant reduction mechanisms, constraints on Tc solubility, and the oxidation state, and speciation of sediment reduction products. The extent of Tc(VII) reduction differed markedly between sediments (ranging from 0% to 100% after 10 days of equilibration), with low solubility Tc(IV) hydrous oxide the major solid phase reduction product. The dominant electron donor in the sediments proved to be (0.5 M HCl extractable) Fe(II). Sediment Fe(II)/Tc(VII) concentrations >4.3 were generally sufficient for complete reduction of Tc(VII) added [1-2.5 micromol (dry wt. sediment) g(-1)]. At these Fe(II) concentrations, the Tc (VII) reduction rate exceeded that observed previously for Fe(II)-mediated reduction on isolated solids of geologic or biogenic origin, suggesting that sediment Fe(II) was either more reactive and/or that electron shuttles played a role in sediment Tc(VII) reduction processes. In buried peats, Fe(II) in excess did not result in complete removal of Tc from solution, perhaps because organic complexation of Tc(IV) limited formation of the Tc(IV) hydrous oxide. In some sands exhibiting Fe(II)/Tc(VII) concentrations <1.1, there was presumptive evidence for direct enzymatic reduction of Tc(VII). Addition of organic electron donors (acetate, lactate) resulted in microbial reduction of (up to 35%) Fe(III) and corresponding increases in extractable Fe(II) in sands that exhibited lowest initial Tc(VII) reduction and highest hydraulic conductivities, suggesting that accelerated microbial reduction of Fe(III) could offer a viable means of attenuating mobile Tc(VII) in this type of sediment system.


Subject(s)
Ferrous Compounds/metabolism , Geologic Sediments/microbiology , Sodium Pertechnetate Tc 99m/metabolism , Water Microbiology , Water Pollutants, Radioactive/metabolism , Bacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Geologic Sediments/chemistry , Oxidation-Reduction
7.
Microb Ecol ; 45(3): 252-8, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12658519

ABSTRACT

The kinetics of acetate uptake and the depth distribution of [2-14C]acetate metabolism were examined in iron-rich sediments from a beaver impoundment in northcentral Alabama. The half-saturation constant (Km) determined for acetate uptake in slurries of Fe(III)-reducing sediment (0.8 mM) was more than 10-fold lower than that measured in methanogenic slurries (12 mM) which supported comparable rates of bulk organic carbon metabolism and Vmax values for acetate uptake. The endogenous acetate concentration (Sn) was also substantially lower (1.7 mM) in Fe(III)-reducing vs methanogenic (9.0 mM) slurries. The proportion of [2-14C]acetate converted to 14CH4 increased with depth from ca 0.1 in the upper 0.5 cm to ca 0.8 below 2 cm and was inversely correlated (r2 = 0.99) to a decline in amorphous Fe(III) oxide concentration. The results of the acetate uptake kinetics experiments suggest that differences in the affinity of Fe(III)-reducing bacteria vs methanogens for acetate can account for the preferential conversion of [2-14C]acetate to 14CO2 in Fe(III) oxide-rich surface sediments, and that the downcore increase in conversion of [2-14C]acetate to 14CH4 can be attributed to progressive liberation of methanogens from competition with Fe(III) reducers as Fe(III) oxides are depleted with depth.


Subject(s)
Acetates/metabolism , Euryarchaeota/metabolism , Ferric Compounds/metabolism , Geologic Sediments/microbiology , Soil Microbiology , Anaerobiosis , Fresh Water/microbiology , Kinetics
8.
Environ Sci Technol ; 35(8): 1644-50, 2001 Apr 15.
Article in English | MEDLINE | ID: mdl-11329715

ABSTRACT

The potential for microbially catalyzed NO3(-)-dependent oxidation of solid-phase Fe(II) compounds was examined using a previously described autotrophic, denitrifying, Fe(II)-oxidizing enrichment culture. The following solid-phase Fe(II)-bearing minerals were considered: microbially reduced synthetic goethite, two different end products of microbially hydrous ferric oxide (HFO) reduction (biogenic Fe3O4 and biogenic FeCO3), chemically precipitated FeCO3, and two microbially reduced iron(III) oxide-rich subsoils. The microbially reduced goethite, subsoils, and chemically precipitated FeCO3 were subject to rapid NO3(-)-dependent Fe(II) oxidation. Significant oxidation of biogenic Fe3O4 was observed. Very little biogenic FeCO3 was oxidized. No reduction of NO3- or oxidation of Fe(II) occurred in pasteurized cultures. The molar ratio of NO3- reduced to Fe(II) oxidized in cultures containing chemically precipitated FeCO3, and one of the microbially reduced subsoils approximated the theoretical stoichiometry of 0.2:1. However, molar ratios obtained for oxidation of microbially reduced goethite, the other subsoil, and the HFO reduction end products did not agree with this theoretical value. These discrepancies may be related to heterotrophic NO3- reduction coupled to oxidation of dead Fe(III)-reducing bacterial biomass. Our findings demonstrate that microbally catalyzed NO3(-)-dependent Fe(II) oxidation has the potential to significantly accelerate the oxidation of solid-phase Fe(II) compounds by oxidized N species. This process could have an important influence on the migration of contaminant metals and radionuclides in subsurface environments.


Subject(s)
Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Nitrates/chemistry , Nitrates/metabolism , Shewanella/metabolism , Biodegradation, Environmental , Kinetics , Nitrites/chemistry , Nitrites/metabolism , Oxidation-Reduction , Soil Pollutants , Time Factors
9.
Appl Environ Microbiol ; 67(3): 1328-34, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11229928

ABSTRACT

The influence of lithotrophic Fe(II)-oxidizing bacteria on patterns of ferric oxide deposition in opposing gradients of Fe(II) and O(2) was examined at submillimeter resolution by use of an O(2) microelectrode and diffusion microprobes for iron. In cultures inoculated with lithotrophic Fe(II)-oxidizing bacteria, the majority of Fe(III) deposition occurred below the depth of O(2) penetration. In contrast, Fe(III) deposition in abiotic control cultures occurred entirely within the aerobic zone. The diffusion microprobes revealed the formation of soluble or colloidal Fe(III) compounds during biological Fe(II) oxidation. The presence of mobile Fe(III) in diffusion probes from live cultures was verified by washing the probes in anoxic water, which removed ca. 70% of the Fe(III) content of probes from live cultures but did not alter the Fe(III) content of probes from abiotic controls. Measurements of the amount of Fe(III) oxide deposited in the medium versus the probes indicated that ca. 90% of the Fe(III) deposited in live cultures was formed biologically. Our findings show that bacterial Fe(II) oxidation is likely to generate reactive Fe(III) compounds that can be immediately available for use as electron acceptors for anaerobic respiration and that biological Fe(II) oxidation may thereby promote rapid microscale Fe redox cycling at aerobic-anaerobic interfaces.


Subject(s)
Bacteria/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Oxygen/metabolism , Aerobiosis , Anaerobiosis , Colony Count, Microbial , Culture Media , Hydrogen-Ion Concentration , Microelectrodes
10.
Appl Environ Microbiol ; 66(3): 1062-5, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10698772

ABSTRACT

Bacterial reductive dissolution of synthetic crystalline Fe(III) oxide-coated sand was studied in continuous-flow column reactors in comparison with parallel batch cultures. The cumulative amount of aqueous Fe(II) exported from the columns over a 6-month incubation period corresponded to (95.0 +/- 3.7)% (n = 3) of their original Fe(III) content. Wet-chemical analysis revealed that only (6.5 +/- 3.2)% of the initial Fe(III) content remained in the columns at the end of the experiment. The near-quantitative removal of Fe was visibly evidenced by extensive bleaching of color from the sand in the columns. In contrast to the column reactors, Fe(II) production quickly reached an asymptote in batch cultures, and only (13.0 +/- 2.2)% (n = 3) of the Fe(III) oxide content was reduced. Sustained bacterial-cell growth occurred in the column reactors, leading to the production and export of a quantity of cells 100-fold greater than that added during inoculation. Indirect estimates of cell growth, based on the quantity of Fe(III) reduced, suggest that only an approximate doubling of initial cell abundance was likely to have occurred in the batch cultures. Our results indicate that removal of biogenic Fe(II) via aqueous-phase transport in the column reactors decreased the passivating influence of surface-bound Fe(II) on oxide reduction activity, thereby allowing a dramatic increase in the extent of Fe(III) oxide reduction and associated bacterial growth. These findings have important implications for understanding the fate of organic and inorganic contaminants whose geochemical behavior is linked to Fe(III) oxide reduction.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Ferric Compounds/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/metabolism , Oxidation-Reduction
11.
Appl Environ Microbiol ; 64(12): 5046-8, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9835607

ABSTRACT

Denaturing gradient gel electrophoresis revealed changes in the bacterial species obtained from enrichment cultures with different inoculum dilutions. This inoculum dilution enrichment approach may facilitate the detection and isolation of a greater number of bacterial species than traditional enrichment techniques.


Subject(s)
Bacteria/classification , DNA, Ribosomal/genetics , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Biofilms , Fresh Water , Molecular Sequence Data , Plant Leaves , RNA, Ribosomal, 16S/isolation & purification
12.
Appl Environ Microbiol ; 64(4): 1504-9, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9546186

ABSTRACT

To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance analog, 2,6-anthraquinone disulfonate (AQDS), as the electron acceptor were members of the family Geobacteraceae. This was true whether the AQDS-reducing bacteria were enriched prior to isolation on solid media or were recovered from the highest positive dilutions of sediments in liquid media. All of the isolates tested not only conserved energy to support growth from acetate oxidation coupled to AQDS reduction but also could oxidize acetate with highly purified soil humic acids as the sole electron acceptor. All of the isolates tested were also able to grow with Fe(III) serving as the sole electron acceptor. This is consistent with previous studies that have suggested that the capacity for Fe(III) reduction is a common feature of all members of the Geobacteraceae. These studies demonstrate that the potential for microbial humic substance reduction can be found in a wide variety of sediment types and suggest that Geobacteraceae species might be important humic-reducing organisms in sediments.


Subject(s)
Gram-Negative Anaerobic Bacteria/isolation & purification , Gram-Negative Anaerobic Bacteria/metabolism , Humic Substances/metabolism , Water Microbiology , Acetic Acid/metabolism , Anthraquinones/metabolism , Base Sequence , DNA Primers/genetics , Electron Transport , Fresh Water/microbiology , Gram-Negative Anaerobic Bacteria/genetics , Iron/metabolism , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification , Sulfur-Reducing Bacteria/metabolism
13.
Appl Environ Microbiol ; 63(12): 4993-5, 1997 Dec.
Article in English | MEDLINE | ID: mdl-16535760

ABSTRACT

Three different gels (Sepharose 4B, Sephadex G-200, and Sephadex G-50) were evaluated as a means of removing humic contaminants from DNA extracts of environmental samples. Sepharose 4B gave superior separation of DNA from humics, and DNA purified in this way showed consistently greater amplification than DNA purified by the other materials.

14.
Appl Environ Microbiol ; 59(8): 2727-9, 1993 Aug.
Article in English | MEDLINE | ID: mdl-16349027

ABSTRACT

The production of small quantities of Fe(II) during the initial phase of microbial Fe(III) reduction greatly increased the amount of Fe(III) that could be extracted from freshwater sediments with oxalate. This finding and other evidence suggest that the oxalate-extractable Fe(III) that is unavailable for microbial reduction in anoxic sediments is not in the form of mixed Fe(III)-Fe(II) forms, as was previously suggested, but rather is in the form of highly crystalline Fe(III) oxides.

15.
Appl Environ Microbiol ; 59(3): 734-42, 1993 Mar.
Article in English | MEDLINE | ID: mdl-16348888

ABSTRACT

The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)-citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO(3)) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...