Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35457754

ABSTRACT

Deer are keystone hosts for adult ticks and have enabled the spread of tick distributions. The '4-Poster' deer bait station was developed by the United States Department of Agriculture to control ticks feeding on free-ranging deer. Although effective in certain scenarios, '4-Poster' deer treatment stations require the use of bait to attract deer to one location, which may cause increased deer disease transmission rates and habitat damage. To better understand and manage the impact of baited '4-Poster' stations on deer movements, we captured and GPS-monitored 35 deer as part of an integrated pest management project. Fifteen '4-Poster' stations were deployed among three suburban county parks to control ticks. To quantify the effects of '4-Poster' stations, we calculated deer movement metrics before and after feeders were filled with whole kernel corn, and we gathered information on visitation rates to feeders. Overall, 83.3% of collared deer visited a feeder and revisited approximately every 5 days. After feeders were refilled, collared deer were ~5% closer to feeders and conspecifics than before filling. Males used a higher percentage of available feeders and visited them more throughout the deployment periods. Although these nuanced alterations in behavior may not be strong enough to increase local deer abundance, in light of infectious diseases affecting deer populations and effective '4-Poster' densities, the core range shifts and clustering after refilling bait may be a cause for concern. As such, trade-offs between conflicting management goals should be carefully considered when deploying '4-Poster' stations.


Subject(s)
Deer , Ticks , Animals , Male , Tick Control , United States , Zea mays
2.
J Insect Sci ; 20(6)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33135754

ABSTRACT

Live capture of white-tailed deer (Odocoileus virginianus) (Zimmermann, 1780) is often necessary for research, population control, disease monitoring, and parasite surveillance. We provide our deer trapping protocol used in a tick-host vector ecology research project and recommendations to improve efficiency of deer trapping programs using drop nets in suburban areas. We captured 125 deer across two trapping seasons. Generally, lower daily minimum temperatures were related to increased capture probability, along with the presence of snow. Our most successful trapping sites were less forested, contained more fragmentation, and greater proportion of human development (buildings, roads, recreational fields). To improve future suburban deer trapping success, trapping efforts should include areas dominated by recreational fields and should not emphasize remote, heavily forested, less fragmented parks. Concurrently, our study illustrated the heterogeneous nature of tick distributions, and we collected most ticks from one trapping site with moderate parameter values between the extremes of the most developed and least developed trapping sites. This emphasized the need to distribute trapping sites to not only increase your capture success but to also trap in areas across varying levels of urbanization and fragmentation to increase the probability of parasite collection.


Subject(s)
Deer/parasitology , Entomology/methods , Host-Parasite Interactions , Ixodidae/physiology , Animals , Cities , Environment , Maryland , Seasons , Specimen Handling/methods , Specimen Handling/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...