Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 166: 98-107, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29550546

ABSTRACT

The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent.


Subject(s)
alpha-Synuclein/chemistry , Protein Conformation , Stainless Steel , Surface Properties
2.
J Hazard Mater ; 322(Pt A): 118-128, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27041442

ABSTRACT

Measuring the interactions between engineered nanoparticles and natural substrates (e.g. soils and sediments) has been very challenging due to highly heterogeneous and rough natural surfaces. In this study, three-dimensional nanostructured slanted columnar thin films (SCTFs), with well-defined roughness height and spacing, have been used to mimic surface roughness. Interactions between titanium dioxide nanoparticles (TiO2NP), the most extensively manufactured engineered nanomaterials, and SCTF coated surfaces were measured using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, in-situ generalized ellipsometry (GE) was coupled with QCM-D to simultaneously measure the amount of TiO2NP deposited on the surface of SCTF. While GE is insensitive to effects of mechanical water entrapment variations in roughness spaces, we found that the viscoelastic model, a typical QCM-D model analysis approach, overestimates the mass of deposited TiO2NP. This overestimation arises from overlaid frequency changes caused by particle deposition as well as additional water entrapment and partial water displacement upon nanoparticle adsorption. Here, we demonstrate a new approach to model QCM-D data, accounting for both viscoelastic effects and the effects of roughness-retained water. Finally, the porosity of attached TiO2NP layer was determined by coupling the areal mass density determined by QCM-D and independent GE measurements.

3.
PLoS One ; 10(10): e0141282, 2015.
Article in English | MEDLINE | ID: mdl-26505481

ABSTRACT

Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.


Subject(s)
Coated Materials, Biocompatible/chemistry , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine/chemistry , Adsorption , Animals , Cattle , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Surface Properties
4.
J Colloid Interface Sci ; 455: 226-35, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26072447

ABSTRACT

HYPOTHESIS: A surface comprising spatially coherent columnar nanostructures is expected to retain intercolumnar liquid during a quartz crystal microbalance measurement due to the surface structure. Part of the liquid retained by the nanostructures may then be displaced by adsorbate. EXPERIMENTS: Slanted columnar nanostructure thin films were designed to vary in height but remain structurally similar, fabricated by glancing angle deposition, and characterized by generalized ellipsometry. A frequency overtone analysis, introduced here, was applied to analyze quartz crystal microbalance data for the exchange of isotope liquids over the nanostructured surfaces and determine the areal inertial mass of structure-retained liquid. The adsorption of cetyltrimethylammonium bromide onto nanostructures was investigated by simultaneous quartz crystal microbalance and generalized ellipsometry measurements. FINDINGS: The areal inertial mass of structure-retained liquid varies linearly with nanostructure height. The proportionality constant is a function of the surface topography and agrees with the generalized ellipsometry-determined nanostructure film porosity, implying that nearly all intercolumnar liquid is retained. We report that for adsorption processes within porous nanostructured films, the quartz crystal microbalance is sensitive not to the combined areal inertial mass of adsorbate and retained liquid but rather to the density difference between adsorbate and liquid due to the volume exchange within the nanostructure film.

6.
Anal Bioanal Chem ; 406(28): 7233-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240934

ABSTRACT

A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Quartz Crystal Microbalance Techniques/methods , Serum Albumin, Bovine/chemistry , Silicon/chemistry , Animals , Cattle , Refractometry , Surface Properties
7.
Opt Express ; 20(5): 5419-28, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418349

ABSTRACT

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. An optical model for ellipsometry data analysis incorporates an anisotropic Bruggeman effective medium approximation. We find that differences in experimental data from before and after fibronectin adsorption can be solely attributable to the uptake of fibronectin within the slanted columnar thin film. Simultaneous, in-situ generalized ellipsometry and quartz crystal microbalance measurements show excellent agreement on the amount and rate of fibronectin adsorption. Quantitative characterization of organic materials within three-dimensional, optically anisotropic slanted columnar thin films could permit their use in optical sensor applications.


Subject(s)
Biosensing Techniques/instrumentation , Fibronectins/analysis , Membranes, Artificial , Refractometry/instrumentation , Adsorption , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...