Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 97(4): 482-487, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26032639

ABSTRACT

Schizophrenia is a chronic disease that has been hypothesized to be linked to neurodevelopmental abnormalities. Schizophrenia patients exhibit impairments in basic sensory processing including sensory gating deficits in P50 and mismatch negativity (MMN). Neuronal nicotinic acetylcholine receptor (nAChR) agonists have been reported to attenuate these deficits. Gestational exposure of rats to methylazoxymethanol acetate (MAM) at embryonic day 17 leads to developmental disruption of the limbic-cortical system. MAM exposed offspring show neuropathological and behavioral changes that have similarities with those seen in schizophrenia. In this study, we aimed to assess whether N40 auditory sensory gating (the rodent form of P50 gating) and MMN deficits as measures of auditory evoked potential (AEP) electroencephalography (EEG) are present in MAM rats and whether nAChR agonists could attend the deficit. E17 male MAM and sham rats were implanted with cortical electrodes at 2 months of age. EEG recordings evaluating N40 gating and MMN paradigms were done comparing effects of vehicle (saline), nicotine and the α7 agonist ABT-107. Deficits were seen for MAM rats compared to sham animals in both N40 auditory sensory gating and MMN AEP recordings. There was a strong trend for N40 deficits to be attenuated by both nicotine (0.16mg/kg i.p. base) and ABT-107 (1.0mg/kg i.p. base). MMN deficits were significantly attenuated by ABT-107 but not by nicotine. These data support the MAM model as a useful tool for translating pharmacodynamic effects in clinical medicine studies of novel therapeutic treatments for schizophrenia.


Subject(s)
Evoked Potentials, Auditory/physiology , Indoles/pharmacology , Methylazoxymethanol Acetate/toxicity , Nicotine/pharmacology , Quinuclidines/pharmacology , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Animals , Behavior, Animal/drug effects , Evoked Potentials, Auditory/drug effects , Female , Gene Expression Regulation , Male , Neurodevelopmental Disorders/chemically induced , Pregnancy , Rats , Rats, Sprague-Dawley , Schizophrenia/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
2.
J Pain ; 15(4): 387.e1-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24374196

ABSTRACT

UNLABELLED: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 µM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE: The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.


Subject(s)
Analgesics/pharmacology , Azabicyclo Compounds/pharmacology , Calcium Channel Blockers/pharmacology , Leucine/analogs & derivatives , Neurons/metabolism , Nociception/drug effects , Spinal Cord/drug effects , Animals , Disease Models, Animal , Immunohistochemistry , Leucine/pharmacology , Male , Neurons/drug effects , Pain/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Spinal Cord/metabolism
3.
J Pharmacol Exp Ther ; 343(1): 233-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22815533

ABSTRACT

Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.9 and 8.2 nM, respectively) that enhances the release of acetylcholine and dopamine in rat prefrontal cortex. In rat behavioral tests, ABT-288 improved acquisition of a five-trial inhibitory avoidance test in rat pups (0.001-0.03 mg/kg), social recognition memory in adult rats (0.03-0.1 mg/kg), and spatial learning and reference memory in a rat water maze test (0.1-1.0 mg/kg). ABT-288 attenuated methamphetamine-induced hyperactivity in mice. In vivo rat brain H(3)R occupancy of ABT-288 was assessed in relation to rodent doses and exposure levels in behavioral tests. ABT-288 demonstrated a number of other favorable attributes, including good pharmacokinetics and oral bioavailability of 37 to 66%, with a wide central nervous system and cardiovascular safety margin. Thus, ABT-288 is a selective H(3)R antagonist with broad procognitive efficacy in rodents and excellent drug-like properties that support its advancement to the clinical area.


Subject(s)
Cognition/drug effects , Cognition/physiology , Histamine H3 Antagonists/pharmacology , Nootropic Agents/pharmacology , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Histamine H3/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Guinea Pigs , HEK293 Cells , Histamine H3 Antagonists/chemistry , Humans , Male , Mice , Nootropic Agents/chemistry , Protein Binding/physiology , Pyridazines/chemistry , Pyrroles/chemistry , Rats , Rats, Inbred SHR , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
4.
J Neurosci ; 31(14): 5406-13, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21471376

ABSTRACT

Mounting evidence suggests excessive glucocorticoid activity may contribute to Alzheimer's disease (AD) and age-associated memory impairment. 11ß-hydroxysteroid dehydrogenase type-1 (HSD1) regulates conversion of glucocorticoids from inactive to active forms. HSD1 knock-out mice have improved cognition, and the nonselective inhibitor carbenoxolone improved verbal memory in elderly men. Together, these data suggest that HSD1 inhibition may be a potential therapy for cognitive deficits, such as those associated with AD. To investigate this, we characterized two novel and selective HSD1 inhibitors, A-918446 and A-801195. Learning, memory consolidation, and recall were evaluated in mouse 24 h inhibitory avoidance. Inhibition of brain cortisol production and phosphorylation of cAMP response element-binding protein (CREB), a transcription factor involved in cognition, were also examined. Rats were tested in a short-term memory model, social recognition, and in a separate group cortical and hippocampal acetylcholine release was measured via in vivo microdialysis. Acute treatment with A-801195 (10-30 mg/kg) or A-918446 (3-30 mg/kg) inhibited cortisol production in the ex vivo assay by ∼ 35-90%. Acute treatment with A-918446 improved memory consolidation and recall in inhibitory avoidance and increased CREB phosphorylation in the cingulate cortex. Acute treatment with A-801195 significantly improved short-term memory in rat social recognition that was not likely due to alterations of the cholinergic system, as acetylcholine release was not increased in a separate set of rats. These studies suggest that selective HSD1 inhibitors work through a novel, noncholinergic mechanism to facilitate cognitive processing.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Memory/physiology , Analysis of Variance , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Brain/enzymology , CREB-Binding Protein/metabolism , Cholinesterase Inhibitors/pharmacology , Donepezil , Dose-Response Relationship, Drug , Electroshock/adverse effects , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Hydrocortisone/metabolism , In Vitro Techniques , Indans/pharmacology , Male , Memory/drug effects , Mice , Mice, Inbred ICR , Microdialysis/methods , Models, Animal , Neuropsychological Tests , Phosphorylation/drug effects , Piperidines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...