Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurodegener ; 16(1): 77, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772429

ABSTRACT

BACKGROUND: Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS: To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS: We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS: We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.


Subject(s)
Motor Disorders , alpha-Synuclein , Animals , Artificial Intelligence , Caenorhabditis elegans/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mammals/metabolism , Motor Disorders/metabolism , Rats , alpha-Synuclein/metabolism
2.
Elife ; 52016 09 20.
Article in English | MEDLINE | ID: mdl-27644113

ABSTRACT

We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias.


Subject(s)
Behavior, Animal , Caenorhabditis elegans/physiology , Locomotion , Algorithms , Animals , Computer Simulation , Models, Biological
3.
Prog Neuropsychopharmacol Biol Psychiatry ; 34(8): 1484-90, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20732371

ABSTRACT

Cholecystokinin (CCK) gene and its receptors play an important role in several biological processes including satiety signaling. Administration of exogenous or endogenously secreted CCK leads to decreased food intake in both rats and humans. Similarly, in rats pretreated with intraperitoneal CCK, antagonists of the CCKA receptor prevent decrease in food intake. The CCKB receptor plays an important role in anxiety and gastric acid secretion. We investigated the role of polymorphisms in the CCK gene (2 SNPs) and its receptors CCKA (4 SNPs) and CCKB (4SNPs, 1 microsatellite, CTn) in antipsychotic induced weight gain (n=215). Weight change (%) from baseline was compared across genotypic groups using analysis of covariance. In the European ancestry patients treated with clozapine or olanzapine a trend of association was observed with the SNP rs2929183 (p=0.10) in CCKBR gene. Carriers of the genotype AA (3.23%±4.8) gained less weight than the AG and GG genotypes (6.50%±6.5; p=0.035). A similar trend was observed for the CTn repeat, where carriers of the LL genotype gained less weight (3.73%±5.41) than the S allele carrying genotypes (6.29%±6.2, p=0.05). In the subjects of African ancestry we observed similar marginal association although with the opposite allele. However, none of these observations would survive corrections for multiple testing. None of the other polymorphisms in either CCK or CCKA receptor genes was associated with weight change (%). In conclusion, CCKB receptor gene may play a role in antipsychotic induced weight gain. However, these observations need to be replicated in a larger and independent sample set.


Subject(s)
Antipsychotic Agents/adverse effects , Cholecystokinin/genetics , Polymorphism, Genetic , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin B/genetics , Schizophrenia/genetics , Weight Gain/genetics , Adolescent , Adult , Female , Genome-Wide Association Study/methods , Genotype , Humans , Male , Middle Aged , Polymorphism, Genetic/genetics , Schizophrenia/drug therapy , Weight Gain/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...