Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(20): 36509-36525, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258578

ABSTRACT

In shallow nearshore waters, seafloor heights and properties can be accurately measured by the current generation of space-based elastic backscatter lidars: CALIOP, flying aboard the CALIPSO satellite and ATLAS aboard ICESat-2. CALIOP's 532 nm volume depolarization ratios, together with the ratios of the attenuated backscatter coefficients measured at 532 nm and 1064 nm, can efficiently distinguish optically shallow waters from nearby land surfaces and deep oceans. ATLAS's high vertical resolution photon measurements can accurately determine seafloor depths in shallow water bodies, characterize seafloor reflectance, and provide assessments of ocean biomass concentrations in the intervening water column. By adding bathymetry, seafloor optical properties (e.g., reflectance, depolarization ratio and attenuated backscatter), and nighttime observations, space lidar measurements obtained in nearshore waters can provide a wealth of unique information to complement existing satellite-based ocean color remote sensing capabilities. The results reported here demonstrate the feasibility of using satellite lidars for nearshore seafloor ecosystem analyses, which in turn provide critical insights for studies of coastal navigation and seabed topography changes due to disasters, as well as the temporal and spatial morphological evolution of coastal systems.

2.
Atmos Meas Tech ; 12(11): 6241-6258, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-33414857

ABSTRACT

The Cloud-Aerosol Transport System (CATS) lidar on board the International Space Station (ISS) operated from 10 February 2015 to 30 October 2017 providing range-resolved vertical backscatter profiles of Earth's atmosphere at 1064 and 532 nm. The CATS instrument design and ISS orbit lead to a higher 1064 nm signal-to-noise ratio than previous space-based lidars, allowing for direct atmospheric calibration of the 1064 nm signals. Nighttime CATS Version 3-00 data were calibrated by scaling the measured data to a model of the expected atmospheric backscatter between 22 and 26 km above mean sea level (AMSL). The CATS atmospheric model is constructed using molecular backscatter profiles derived from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) re-analysis data and aerosol scattering ratios measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The nighttime normalization altitude region was chosen to simultaneously minimize aerosol loading and variability within the CATS data frame, which extends from 28 km to -2 km AMSL. Daytime CATS Version 3-00 data were calibrated through comparisons with nighttime measurements of the layer integrated attenuated total backscatter (iATB) from strongly scattering, rapidly attenuating opaque cirrus clouds. The CATS nighttime 1064 nm attenuated total backscatter (ATB) uncertainties for clouds and aerosols are primarily related to the uncertainties in the CATS nighttime calibration technique, which are estimated to be ~9%. Median CATS V3-00 1064 nm ATB relative uncertainty at night within cloud and aerosol layers is 7%, slightly lower than these calibration uncertainty estimates. CATS median daytime 1064 nm ATB relative uncertainty is 21% in cloud and aerosol layers, similar to the estimated 16-18% uncertainty in the CATS daytime cirrus cloud calibration transfer technique. Coincident daytime comparisons between CATS and the Cloud Physics Lidar (CPL) during the CATS-CALIPSO Airborne Validation Experiment (CCAVE) project show good agreement in mean ATB profiles for clear-air regions. Eight nighttime comparisons between CATS and the PollyXT ground based lidars also show good agreement in clear-air regions between 3-12 km, with CATS having a mean ATB of 19.7 % lower than PollyXT. Agreement between the two instruments (~7%) is even better within an aerosol layer. Six-month comparisons of nighttime ATB values between CATS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) also show that iATB comparisons of opaque cirrus clouds agree to within 19%. Overall, CATS has demonstrated that direct calibration of the 1064 nm channel is possible from a space based lidar using the atmospheric normalization technique.

3.
Atmos Meas Tech ; 11(6): 3281-3296, 2018 Jun.
Article in English | MEDLINE | ID: mdl-33868503

ABSTRACT

This paper presents an innovative retrieval method that translate the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m resolution are discussed. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and MODIS BRDF/Albedo model parameters. Besides the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectance is calculated from the CALIOP lidar background data. It is compared with bidirectional reflectance from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and would have valuable applications for modellers.

4.
Opt Express ; 24(25): 29001-29008, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958565

ABSTRACT

A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30° off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180° scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

5.
Opt Express ; 15(9): 5327-32, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-19532786

ABSTRACT

Using measurements obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, relationships between layer-integrated depolarization ratio (delta) and layer-integrated attenuated backscatter (gamma) are established for moderately thick clouds of both ice and water. A new and simple form of the delta-gamma relation for spherical particles, developed from Monte Carlo simulations and suitable for both water clouds and spherical aerosol particles, is found to agree well with the observations. A high-backscatter, low-depolarization delta-gamma relationship observed for some ice clouds is shown to result primarily from horizontally oriented plates and implies a preferential lidar ratio - depolarization ratio relation in nature for ice cloud particles containing plates.

SELECTION OF CITATIONS
SEARCH DETAIL
...