Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biomed Mater ; 19(5)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38917837

ABSTRACT

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Subject(s)
Cell Adhesion , Cell Differentiation , Cell Proliferation , Mouth Mucosa , Osteogenesis , Stem Cells , Titanium , Titanium/chemistry , Humans , Osteogenesis/drug effects , Mouth Mucosa/cytology , Mouth Mucosa/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Surface Properties , Cells, Cultured , Osteoblasts/cytology , Osteoblasts/metabolism , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Survival , Osseointegration/drug effects , Biocompatible Materials/chemistry
2.
Dalton Trans ; 53(16): 7081-7092, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38567490

ABSTRACT

Semiconductor heterojunctions are an effective way to achieve efficient photocatalysts, as they can provide an adequate redox potential with visible light excitation. Several works have reported synergistic effects with nanoparticle semiconductor materials. The question is still open for thin film heterojunctions formed by stacked layers, as photocatalysis is considered a surface phenomenon. To investigate if the internal layer really affects or modifies the photocatalytic properties of the external material, we analyze the thin film heterojunction with ZnO and Bi2O3 semiconductors deposited by spray pyrolysis in two configurations: substrate/ZnO/Bi2O3 and substrate/Bi2O3/ZnO. Microstructural analysis was performed to verify the formation of the physical junction of the materials and discard new ternary phases. The photocatalytic activity was analyzed as a function of the thickness of the layers under blue light irradiation. We determined the conduction and valence bands positions, the carrier concentrations, mobilities, Fermi levels, etc. that allowed us to distinguish two reaction mechanisms depending on the configuration. There is a strong compromise between the order and thickness of the layers with the photocatalytic activity. The internal electric field produced in the interface defines the route of the photogenerated charges, and therefore the photocatalytic response. Thus, well-designed thin film heterojunctions can indeed improve the photocatalytic activity of the surface layer.

3.
J Biomed Mater Res A ; 112(9): 1399-1411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38284510

ABSTRACT

Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 µg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.


Subject(s)
Calcium Phosphates , Cell Adhesion , Periodontal Ligament , Surface Properties , Titanium , Titanium/chemistry , Humans , Calcium Phosphates/chemistry , Periodontal Ligament/cytology , Cell Proliferation , Coated Materials, Biocompatible/chemistry , Adsorption , Cells, Cultured , Collagen , Peptide Fragments
4.
PLoS One ; 18(12): e0294972, 2023.
Article in English | MEDLINE | ID: mdl-38079398

ABSTRACT

The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.


Subject(s)
Silver , Viruses , Humans , Silver/pharmacology , Copper/pharmacology , Respiratory Aerosols and Droplets , SARS-CoV-2 , Aerosols , Antiviral Agents/pharmacology , Bacteria
5.
Faraday Discuss ; 247(0): 182-194, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37551421

ABSTRACT

Dihydrolevoglucosenone (DLG or Cyrene™) solvent is a green dipolar solvent produced from cellulose waste. Different studies have demonstrated that it can successfully replace dipolar solvents, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA) and N-methylpyrrolidinone (NMP), in a variety of chemical reactions. In this paper, the first application of DLG in organic electrosynthesis is described, with results of its use in the electrochemical reduction of benzophenone derivatives (ca. E = -1.75 V vs. Ag/AgCl), as a greener alternative to other dipolar solvents with environmental concerns. Conductivity measurements show that the solvent presents conductivity and viscosity limitations that can be overcome by using EtOH as a cosolvent. The DLG/EtOH mixture resulted in a convenient solvent to carry out galvanostatic electroreductions of starting materials that exhibit high potential value. Furthermore, the reaction pathway (1e- or 2e-) was found to be dependent on the supporting electrolyte used; TBABF4 favored 2e- reduction to the corresponding alcohol (52-85%), whereas LiClO4 promoted C-C pinacolic coupling (47-70%).

6.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36821850

ABSTRACT

Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.


Subject(s)
Osteogenesis , Zinc Oxide , Humans , Gelatin/chemistry , Zinc Oxide/pharmacology , Tissue Scaffolds/chemistry , Escherichia coli , Quality of Life , Bone Regeneration , Anti-Bacterial Agents/pharmacology , Cell Differentiation
7.
Materials (Basel) ; 15(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955174

ABSTRACT

Biomaterials with adequate properties to direct a biological response are essential for orthopedic and dental implants. The surface properties are responsible for the biological response; thus, coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have been suggested as promising for orthopedic and dental implants. However, a comparative study among them is still missing to select the most promising for bone-growth-related applications. In this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffraction, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion, viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem cells plated on the coatings were measured to define the biological response. Results confirmed that all coatings were biocompatible. However, a more significant number of cells and proliferative cells were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5 seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time than TiO2 and ZrO2.

8.
Materials (Basel) ; 15(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591473

ABSTRACT

The microstructural characteristics of biodegradable Mg alloys determine their performance and appropriateness for orthopedic fixation applications. In this work, the effect of the annealing treatment of a Mg-0.7Zn-0.6Ca (ZX11) alloy on the mechanical integrity, corrosive behavior, and biocompatibility-osteoinduction was studied considering two annealing temperatures, 350 and 450 °C. The microstructure showed a recrystallized structure, with a lower number of precipitates, grain size, and stronger basal texture for the ZX11-350 condition than the ZX11-450. The characteristics mentioned above induce a higher long-term degradation rate for the ZX11-450 than the ZX11-350 on days 7th and 15th of immersion. In consequence, the mechanical integrity changes within this period. The increased degradation rate of the ZX11-450 condition reduces 40% the elongation at failure, in contrast with the 16% reduction for the ZX11-350 condition. After that period, the mechanical integrity remained unchanged. No cytotoxic effects were observed for both treatments and significant differentiation of mesenchymal stem cells into the osteoblast phenotype was observed.

9.
Dalton Trans ; 51(6): 2413-2427, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35048098

ABSTRACT

The increasing interest in acquiring efficient visible-light active photocatalytic materials has led to the formation of heterojunctions with different combinations of semiconductors. Despite the fact that increasingly more complex structures are proposed, there are still many unclear factors affecting their performance and limiting their prompt implementation. In this work, we used the spray pyrolysis technique to deposit individual visible light-active BiOBr and BiOI films and formed the heterojunctions BiOBr-BiOI and BiOI-BiOBr to determine the effect of the stacking order of semiconductors. These materials were widely characterized; their structural, optical, (photo)electrochemical, and photocatalytic properties were evaluated, revealing that the configuration BiOI-BiOBr boosted the photocatalytic indigo carmine dye removal under simulated sunlight irradiation, but the opposite layout quenched it. The high efficiency is attributed to a better use of the incident radiation and the effective migration of the photogenerated carriers. BiOBr - with a wider band gap and a less negative conduction band with respect to BiOI - provides its good attributes to the heterostructure, such as high stability and low recombination rates, when it is at the surface. We demonstrated that in thin-film heterostructures, the order in which the layers are stacked becomes decisive for the photocatalytic performance and that the energy band gap and the relative band positions of both semiconductors are the principal features that govern the photocatalytic mechanism. These findings provide a key to designing more efficient photocatalysts without several unsuccessful trials.

10.
Biomed Mater ; 16(4)2021 06 11.
Article in English | MEDLINE | ID: mdl-34038883

ABSTRACT

Periodontitis is a chronic, multifactorial, inflammatory disease characterized by the progressive destruction of the periodontal tissues. Guided tissue regeneration (GTR), involving the use of barrier membranes, is one of the most successful clinical procedures for periodontal therapy. Nevertheless, rapid degradation of the membranes and membrane-related infections are considered two of the major reasons for GTR clinical failure. Recently, integration of non-antibiotic, antimicrobial materials to the membranes has emerged as a novel strategy to face the bacterial infection challenge, without increasing bacterial resistance. In this sense, bismuth subsalicylate (BSS) is a non-antibiotic, metal-based antimicrobial agent effective against different bacterial strains, that has been long safely used in medical treatments. Thus, the aim of the present work was to fabricate fibrillar, non-rapidly bioresorbable, antibacterial GTR membranes composed of polycaprolactone (PCL), gelatin (Gel), and BSS as the antibacterial agent. PCL-G-BSS membranes with three different BSS concentrations (2 wt./v%, 4 wt./v%, and 6 wt./v%) were developed by electrospinning and their morphology, composition, water wettability, mechanical properties, Bi release and degradation rate were characterized. The Cytotoxicity of the membranes was studiedin vitrousing human osteoblasts (hFOB) and gingival fibroblasts (HGF-1), and their antibacterial activity was tested againstAggregatibacter actinomycetemcomitans, Escherichia coli, Porphyromonas gingivalisandStaphylococcus aureus.The membranes obtained exhibited adequate mechanical properties for clinical application, and appropriate degradation rates for allowing periodontal defects regeneration. The hFOB and HGF-1 cells displayed adequate viability when in contact with the lixiviated products from the membranes, and, in general, displayed antibacterial activity against the four bacteria strains tested. Thus, the PCL-G-BSS membranes showed to be appropriate as potential barrier membranes for periodontal GTR treatments.


Subject(s)
Anti-Bacterial Agents , Bismuth , Gelatin/chemistry , Membranes, Artificial , Organometallic Compounds , Polyesters/chemistry , Salicylates , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/toxicity , Bismuth/chemistry , Bismuth/pharmacology , Bismuth/toxicity , Cell Survival/drug effects , Cells, Cultured , Electrochemical Techniques , Fibroblasts/drug effects , Gingiva/cytology , Guided Tissue Regeneration, Periodontal , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/toxicity , Salicylates/chemistry , Salicylates/pharmacology , Salicylates/toxicity
11.
Biomed Mater ; 15(3): 035006, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31995538

ABSTRACT

The bacterial colonization of absorbable membranes used for guided tissue regeneration (GTR), as well as their rapid degradation that can cause their rupture, are considered the major reasons for clinical failure. To address this, composite membranes of polycaprolactone (PCL) and gelatin (Gel) loaded with zinc oxide nanoparticles (ZnO-NPs; 1, 3 and 6 wt% relative to PCL content) were fabricated by electrospinning. To fabricate homogeneous fibrillar membranes, acetic acid was used as a sole common solvent to enhance the miscibility of PCL and Gel in the electrospinning solutions. The effects of ZnO-NPs in the physico-chemical, mechanical and in vitro biological properties of composite membranes were studied. The composite membranes showed adequate mechanical properties to offer a satisfactory clinical manipulation and an excellent conformability to the defect site while their degradation rate seemed to be appropriate to allow successful regeneration of periodontal defects. The presence of ZnO-NPs in the composite membranes significantly decreased the planktonic and the biofilm growth of the Staphylococcus aureus over time. Finally, the viability of human osteoblasts and human gingival fibroblasts exposed to the composite membranes with 1 and 3 wt% of ZnO-NPs indicated that those membranes are not expected to negatively influence the ability of periodontal cells to repopulate the defect site during GTR treatments. The results here obtained suggest that composite membranes of PCL and Gel loaded with ZnO-NPs have the potential to be used as structurally stable GTR membranes with local antibacterial properties intended for enhancing clinical treatments.


Subject(s)
Guided Tissue Regeneration/methods , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Tissue Engineering/methods , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival , Fibroblasts/drug effects , Gelatin/chemistry , Gingiva/drug effects , Gingiva/metabolism , Humans , Membranes, Artificial , Microbial Sensitivity Tests , Nanotechnology/methods , Osteoblasts/drug effects , Polyesters/chemistry , Staphylococcus aureus/metabolism , Tensile Strength , Thermogravimetry
12.
ACS Appl Mater Interfaces ; 10(37): 31374-31383, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30129358

ABSTRACT

The incorporation of plasmonic nanostructures in active electrodes has become one of the most attractive ways to enhance the photoconversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Although an enhancement of PCE because of the incorporation of plasmonic nanostructures of different sizes, either bare or coated, has been demonstrated, the fundamental mechanisms associated to such enhancement are still unclear. Besides, the photocurrent enhancement of plasmonic DSSCs is frequently associated to the strong surface plasmon resonance (SPR) absorption of metal nanoparticles. In this work, through oxygen K-edge soft X-ray absorption and emission spectroscopies of plasmonic electrodes and electrodynamical characterization of the fabricated cells, we demonstrate a band gap narrowing and photocharging effect on the plasmonic electrodes that definitely contribute to the PCE enhancement in plasmonic DSSCs. The incorporation of bare metal nanoparticles in active metal-oxide semiconductor electrodes such as TiO2 in optimum concentration causes an upward shift of its valence band edge, reducing its effective band gap energy and enhancing the short-circuit current of DSSCs. On the other hand, small perturbation-based stepped light-induced transient measurements of photovoltage and photocurrent of the operating DSSCs revealed an upward shift of quasi-Fermi level of photoelectrodes because of the photocharging effect induced by the incorporated metal nanoparticles. The upward shift of the quasi-Fermi level causes an increase in open-circuit voltage ( VOC), nullifying the effect of band gap reduction. The short-circuit photocurrent enhancement was controlled by the band gap narrowing, screening the SPR contribution. The results presented in this work not only clarify the contribution of SPR absorption in plasmonic DSSCs, but also highlight the importance of considering the corrections in the effective base voltage because of the quasi-Fermi level band shift during the estimation of the transport and recombination parameters of an assembled DSSC.

13.
Dalton Trans ; 47(35): 12459-12467, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30140815

ABSTRACT

Bismuth oxyhalides (BiOX, where X = F, Cl, Br, I) are interesting materials due to their layered structure, which can be useful for different applications. In this work, we present the synthesis of the complete BiOX family in the thin film form. The tetragonal phase Bi2O3 film deposited onto a glass substrate was transformed into BiOF, BiOCl or BiOBr by a simple immersion at ambient temperature in a halide (X = F, Cl, Br) containing solution. For these films, a residual phase from the oxide was present and for BiOF another phase (tentatively identified as Bi7O5F11) was present too. For the BiOI film synthesis, an iodine and bismuth containing solution was sprayed onto the glass substrate heated at 275 °C and a pure phase was obtained. Microstructural and morphological characterization was performed by X-ray diffraction and scanning electron microscopy, while the chemical environment was studied by X-ray photoelectron spectroscopy. Optical and photocatalytic properties were also obtained. The physical and chemical characteristics of the BiOX films follow a correlation with the atomic radius of the halogen atom incorporated into the corresponding lattice. All the BiOX films showed a photocatalytic response for the photodiscoloration of indigo carmine dye under simulated sunlight irradiation in an alkaline medium. The photocatalytic reactions occurred via 2 proton-electron transfer from the oxide or oxyhalide to the adsorbed IC dye, favoring its reduction to the corresponding leuco IC form.

14.
Nanomedicine ; 14(5): 1695-1706, 2018 07.
Article in English | MEDLINE | ID: mdl-29673978

ABSTRACT

ZnO and Zn acetate nanoparticles were embedded in polycaprolactone coaxial-fibers and uniaxial-fibers matrices to develop potential antibacterial nanocomposite wound dressings (mats). Morphology, composition, wettability, crystallinity and fiber structure of mats were characterized. Antibacterial properties of mats were tested against E. coli and S. aureus by turbidity and MTT assays. The effect of UVA illumination (prior to bacteria inoculation) on mats' antibacterial activity was also studied. Results showed that a coaxial-fibers design maintained nanoparticles distributed in the outer-shell of fibers and, in general, enhanced the antibacterial effect of the mats, in comparison to conventional uniaxial-fibers mats. Results indicated that mats simultaneously inhibited planktonic and biofilm bacterial growth by, probably, two main antibacterial mechanisms; 1) release of Zn2+ ions (mainly from Zn acetate nanoparticles) and 2) photocatalytic oxidative processes exerted by ZnO nanoparticles. Antibacterial properties of mats were significantly improved by coaxial-fibers design and exposure to UVA-light prior to bacteria inoculation.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Nanofibers/administration & dosage , Polyesters/chemistry , Staphylococcus aureus/drug effects , Zinc Acetate/administration & dosage , Zinc Oxide/administration & dosage , Anti-Bacterial Agents/chemistry , Bandages , Escherichia coli/growth & development , Nanofibers/chemistry , Nanotechnology , Staphylococcus aureus/growth & development , Zinc Acetate/chemistry , Zinc Oxide/chemistry
15.
J Biomed Mater Res A ; 105(2): 498-509, 2017 02.
Article in English | MEDLINE | ID: mdl-27706917

ABSTRACT

Human mesenchymal stem cells (MSCs) showed larger differentiation into osteoblasts on nanoscale amorphous titanium oxide (TiO2 ) coatings in comparison to polycrystalline TiO2 coatings or native oxide layers. In this article, we showed that the subtle alterations in the surface properties due to a different atomic ordering of titanium oxide layers could substantially modify the osteoblastic differentiation of MSCs. Amorphous (a) and polycrystalline (c) TiO2 coatings were deposited on smooth (PT) and microstructured sandblasted/acid-etched (SLA) Ti substrates using a magnetron sputtering system. The surface roughness, water contact angle, structure, and composition were measured using confocal microscopy, drop sessile drop, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The ∼70-nm-thick coatings presented a well-passivated and uniform TiO2 (Ti4+ ) surface composition, while the substrates (native oxide layer) showed the presence of Ti atoms in lower valence states. The polycrystalline TiO2 -coated surfaces (cPT and cSLA) showed the same cell attachment as the uncoated metallic surfaces (PT and SLA), and in both cases, it was lower on the rough than on the smooth surfaces. However, attachment and differentiation were significantly increased on the amorphous TiO2 -coated surfaces (aPT and aSLA). The amorphous coated Ti surfaces presented the highest expression of integrins and production of osteogenic proteins in comparison to the uncoated and crystalline-coated Ti surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 498-509, 2017.


Subject(s)
Cell Differentiation/drug effects , Coated Materials, Biocompatible , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Titanium , Cell Line , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Surface Properties , Titanium/chemistry , Titanium/pharmacology
16.
Mater Sci Eng C Mater Biol Appl ; 66: 119-129, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27207045

ABSTRACT

This work compares the surface modifications induced by the immersion in solutions that simulate inflammatory conditions of pure titanium (cpTi) and medical grade stainless steel (SS). The inflammatory conditions were simulated using a mixture of Hartman solution and 50mM of hydrogen peroxide (H2O2) at pH=5.2. The samples were immersed by 7days refreshing the solution every day to keep the reactivity of the H2O2. The surface characteristics that were investigated were: elemental composition by X-ray photoelectron spectroscopy (XPS); topography by atomic force microscopy (AFM) and profilometry; wettability and surface energy by sessile drop contact angle and point of zero charge by titration. Moreover, the variations in the electrochemical response were evaluated by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) performed before and after the treatment using the Hartman solution as the electrolyte. The XPS results indicated that for both metallic samples, oxidation of the surface was promoted and/or the oxide layer was thicker after the immersion. The roughness and the solid-liquid surface energy were increased; the samples showed a more hydrophilic character after the treatment. However, the surface energy of the solid estimated using the Van Oss-Chaudhury-Good approach showed different trends between the cpTi and the SS surfaces; the polar component decreased for cpTi, while it increased for SS. Finally, the electrochemical results indicated that the corrosion resistance (Rcor) and the pore resistance (Rpo) significantly decreased for cpTi, while both resistances were not significantly different for the SS. This is indicative of a higher dissolution of the cpTi compared to SS and the lower Rpo means that the species are easily transported through the surface layer, which can be explained in terms of the formation of a porous TiOx layer, not observed on the SS. The cpTi surface suffered from a dissolution/oxidation process that allows its integration with the surrounding media, while the SS remained completely passive and this different response might be related to their distinguished clinical outcome.


Subject(s)
Biocompatible Materials/chemistry , Stainless Steel/chemistry , Titanium/chemistry , Electrochemical Techniques , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Photoelectron Spectroscopy , Surface Properties , Thymol/chemistry , Wettability
17.
Mater Sci Eng C Mater Biol Appl ; 57: 88-99, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26354243

ABSTRACT

Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 µm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 µm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.


Subject(s)
Bacterial Adhesion/physiology , Coated Materials, Biocompatible/chemistry , Escherichia coli/physiology , Staphylococcus aureus/physiology , Titanium/chemistry , Zirconium/chemistry , Biofilms/growth & development , Crystallization , Escherichia coli/cytology , Materials Testing , Staphylococcus aureus/cytology , Surface Properties
18.
Photochem Photobiol Sci ; 14(6): 1110-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25909244

ABSTRACT

Bismuth oxide thin films were obtained by the spray pyrolysis method using bismuth acetate as the precursor salt. The films were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-vis diffuse reflectance, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The XRD patterns indicated that the pure ß phase is obtained at 450 °C and was also confirmed by FTIR. This phase presents a nanoplate morphology which is adequate for the photocatalytic reactions. Moreover, the band gap value was 2.6 eV indicating a good capacity of visible light absorption. The photocatalytic degradation of the Methyl Orange (MO) dye was pH dependent, an acid solution being easier to degrade. However, the Bi2O3 films were easily converted into BiOCl when they were in contact with a solution containing HCl. In order to preserve the ß-Bi2O3 phase, the Acid Blue 113 dye with its natural pH of 8 was used to evaluate the stability of the photocatalytic activity after five degradation cycles. The photoactivity was practically stable indicating a good performance of the material. This encouraged us to test the films in a continuous flow solar reactor prototype for the degradation of the dye solution using sunlight radiation exclusively. The good performance of the ß-Bi2O3 films indicates that they can be used for sustainable water treatment applications.

19.
Biomaterials ; 51: 69-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25770999

ABSTRACT

Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2ß1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra < 0.4 µm], rough [Ra ≥ 3.4 µm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and ß1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins ß1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin ß1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition.


Subject(s)
Cell Differentiation/drug effects , Coated Materials, Biocompatible/pharmacology , Graphite/pharmacology , Integrins/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Protein Subunits/metabolism , Cell Adhesion/drug effects , Cell Line , Gene Silencing/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Surface Properties , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...