Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 11: 504-13, 2015.
Article in English | MEDLINE | ID: mdl-25977725

ABSTRACT

The 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl compounds (DDC) and thioketones preferably occurs with Z,E-conformers and leads to the formation of transient thiocarbonyl ylides in two stages. The thermodynamically favorable further transformation of C=S ylides bearing at least one acyl group is identified as the 1,5-electrocyclization into 1,3-oxathioles. However, in the case of diazomalonates, the dominating process is 1,3-cyclization into thiiranes followed by their spontaneous desulfurization yielding the corresponding alkenes. Finally, carbocyclic diazodiketones are much less reactive under similar conditions due to the locked cyclic structure and are unfavorable for the 1,3-dipolar cycloaddition due to the Z,Z-conformation of the diazo molecule. This structure results in high, positive values of the Gibbs free energy change for the first stage of the cycloaddition process.

2.
Beilstein J Org Chem ; 9: 2751-61, 2013.
Article in English | MEDLINE | ID: mdl-24367438

ABSTRACT

Acyclic diazodicarbonyl compounds react at room temperature with cycloaliphatic thioketones, e.g. 2,2,4,4-tetramethyl-3-thioxocyclobutanе-1-one and adamantanethione, via a cascade process in which the key step is a 1,5-electrocyclization of the intermediate thiocarbonyl ylide leading to tetrasubstituted spirocyclic 1,3-oxathioles. The most reactive diazodicarbonyl compound was diazoacetylacetone. In the case of dimethyl diazomalonate competitive 1,3-electrocyclization yielded the corresponding thiirane at elevated temperature, which after spontaneous desulfurization produced a tetrasubstituted alkene. To explain the observed temperature dependence of the main reaction product type obtained from dimethyl diazomalonate and 2,2,4,4-tetramethyl-3-thioxocyclobutanе-1-one as well as to verify reversibility of the thiocarbonyl ylide and 1,3-oxathiole interconversion, the calculations of the energy profile for the transformation of 1,3-oxathiole to alkene were performed at the DFT PBE1PBE/6-31G(d) level.

SELECTION OF CITATIONS
SEARCH DETAIL
...