Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(17)2022 08 28.
Article in English | MEDLINE | ID: mdl-36078088

ABSTRACT

The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids' intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.


Subject(s)
Photosystem II Protein Complex , Spinacia oleracea , Chlorophyll/metabolism , Electron Transport , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Spinacia oleracea/metabolism
2.
Life (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36143346

ABSTRACT

Flat-panel photobioreactors are effective systems for microalgae cultivation. This paper presents the growth characteristics of the microalgae Chlorella sorokiniana IPPAS C-1 as a result of three-stage scale-up cultivation in a specially designed cultivation system. First, C. sorokiniana was grown aseptically in 250 mL glass vessels; then, it was diluted and inoculated into a 5-liter flat-panel horizontal photobioreactor; and, at the last stage, the culture was diluted and inoculated into a 70-liter flat-panel vertical photobioreactor. In the presented cycle, the cultured biomass increased by 326 times in 13 days (from 0.6 to 195.6 g dw), with a final biomass concentration of 2.8 g dw L-1. The modes of semi-continuous cultivation were considered. The biomass harvest and dilution of the suspension were carried out either every day or every 3-4 days. For C. sorokiniana IPPAS C-1, a conversion coefficient of optical density values to dry biomass (g L-1) was refined through a factor of 0.33. The key parameters of the photobioreactors tested in this work are discussed.

3.
Sci Rep ; 10(1): 10267, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581255

ABSTRACT

A predominant physiological change that occurs during leaf senescence is a decrease in photosynthetic efficiency. An optimal organization of photosynthesis complexes in plant leaves is critical for efficient photosynthesis. However, molecular mechanisms for regulating photosynthesis complexes during leaf senescence remain largely unknown. Here we tracked photosynthesis complexes alterations during leaf senescence in Arabidopsis thaliana. Grana stack is significantly thickened and photosynthesis complexes were disassembled in senescing leaves. Defects in STN7 and CP29 led to an altered chloroplast ultrastructure and a malformation of photosynthesis complex organization in stroma lamella. Both CP29 phosphorylation by STN7 and CP29 fragmentation are highly associated with the photosynthesis complex disassembly. In turn, CP29 functions as a molecular glue to facilitate protein complex formation leading phosphorylation cascade and to maintain photosynthetic efficiency during leaf senescence. These data suggest a novel molecular mechanism to modulate leaf senescence via CP29 phosphorylation and fragmentation, serving as an efficient strategy to control photosynthesis complexes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Chloroplast Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Plant Leaves/growth & development , Protein Serine-Threonine Kinases/metabolism , Ribonucleoproteins/metabolism , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Microscopy, Electron, Transmission , Phosphorylation , Photosynthetic Reaction Center Complex Proteins/ultrastructure , Plant Leaves/metabolism , Protein Stability
4.
Dalton Trans ; 48(32): 12147-12158, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31328758

ABSTRACT

Phthalocyanines are a promising class of ligands for manganese because of their high binding affinity. This effect is suggested to be an important factor because phthalocyanines tightly bind manganese and stabilize it under moderate conditions. The strong donor power of phthalocyanine is also suggested as a critical factor to stabilize high-valent manganese phthalocyanine. Herein, a manganese(ii) phthalocyanine, which is stable under moderate conditions, was investigated under harsh electrochemical water oxidation. By scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction, extended X-ray absorption fine structure analysis, X-ray absorption near edge structure analysis, chronoamperometry, magnetic measurements, Fourier-transform infrared spectroscopy, and electrochemical methods, it is shown that manganese phthalocyanine, a known molecular complex showing good stability under moderate conditions, could not withstand water oxidation catalysis and ultimately is altered to form catalytic oxide particles. Such nanosized Mn oxides are the true catalyst for water oxidation. Besides, we try to go a step forward to find an answer as to how Mn oxides form on the surface of the electrode.

5.
Biochimie ; 160: 200-209, 2019 May.
Article in English | MEDLINE | ID: mdl-30898645

ABSTRACT

Here, for the first time, we report the presence of highly active extracellular carbonic anhydrase (CA) of α-class in cyanobacterial cells. The enzyme activity was confirmed both in vivo in intact cells and in vitro, using the recombinant protein. CA activity in intact cells of Cyanothece sp. ATCC 51142 reached ∼0.6 Wilbur-Anderson units (WAU) per 1 mg of total cell protein, and it was inhibited by a specific CAs inhibitor, ethoxyzolamide. The genes cce_4328 (ecaA) and cce_0871 (ecaB), encoding two potential extracellular CAs of Cyanothece have been cloned, and the corresponding proteins EcaA and EcaB, representing CAs of α- and ß-class, respectively, have been heterologously expressed in Escherichia coli. High specific activity (∼1.1 × 104 WAU per 1 mg of target protein) was detected for the recombinant EcaA only. The presence of EcaA in the outer cellular layers of Cyanothece was confirmed by immunological analysis with antibodies raised against the recombinant protein. The absence of redox regulation of EcaA activity indicates that this protein does not possess a disulfide bond essential for some α-class CAs. The content and activity of EcaA in a fraction of periplasmic proteins was higher in Cyanothece cells grown at ambient concentration of CO2 (0.04%) compared to those grown at an elevated CO2 concentration (1.7%). At the same time, the level of ecaA gene mRNA varied insignificantly in response to changes in CO2 supply. Our results indicate that EcaA is responsible for CA activity of intact Cyanothece cells and point to its possible physiological role under low-CO2 conditions.


Subject(s)
Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Cyanothece/enzymology , Extracellular Space/enzymology , Recombinant Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carbonic Anhydrases/genetics , Carbonic Anhydrases/isolation & purification , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
6.
Biochim Biophys Acta Bioenerg ; 1859(4): 292-299, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29410217

ABSTRACT

It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3-/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α­carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α­carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3-/CO2. Addition of exogenous HCO3- or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.


Subject(s)
Carbonic Anhydrases/metabolism , Electrons , Mesylates/pharmacology , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Pisum sativum/enzymology , Acetazolamide/pharmacology , Bicarbonates/metabolism , Carbon Dioxide/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Chlorophyll/metabolism , Chlorophyll A , Electron Transport/drug effects , Electron Transport/radiation effects , Hydrogen-Ion Concentration , Kinetics , Light , Oxygen/metabolism , Pisum sativum/drug effects , Pisum sativum/radiation effects , Photosystem II Protein Complex/antagonists & inhibitors , Thylakoids/drug effects , Thylakoids/enzymology , Thylakoids/radiation effects
7.
Photosynth Res ; 136(1): 1-16, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28921410

ABSTRACT

Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.


Subject(s)
Biochemistry/history , Biophysics/history , History, 20th Century , History, 21st Century , Humans
8.
Photosynth Res ; 133(1-3): 139-153, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28497193

ABSTRACT

Increasing inefficiency of production of important agricultural plants raises one of the biggest problems in the modern world. Herbicide application is still the best method of weed management. Traditional herbicides blocking only one of the plant metabolic pathways is ineffective due to the rapid growth of herbicide-resistant weeds. The synthesis of novel compounds effectively suppressing several metabolic processes, and therefore achieving the synergism effect would serve as the alternative approach to weed problem. For this reason, recently, we synthesized a series of nine novel Cu(II) complexes and four ligands, characterized them with different analyses techniques, and carried out their primary evaluation as inhibitors of photosynthetic electron transfer in spinach thylakoids (design, synthesis, and evaluation of a series of Cu(II) based metal-organic complexes as possible inhibitors of photosynthesis, J Photochem Photobiol B, submitted). Here, we evaluated in vitro inhibitory potency of these agents against: photochemistry and carbonic anhydrase activity of photosystem II (PSII); α-carbonic anhydrase from bovine erythrocytes; as well as glutathione reductase from chloroplast and baker's yeast. Our results show that all Cu(II) complexes excellently inhibit glutathione reductase and PSII carbonic anhydrase activity. Some of them also decently inhibit PSII photosynthetic activity.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Coordination Complexes/pharmacology , Copper/pharmacology , Glutathione Reductase/antagonists & inhibitors , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Animals , Biocatalysis/drug effects , Carbon Dioxide/metabolism , Cattle , Chloroplasts/drug effects , Chloroplasts/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Glutathione Reductase/metabolism , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Kinetics , Ligands , Oxidation-Reduction , Quantitative Structure-Activity Relationship , Saccharomyces cerevisiae/metabolism , Spinacia oleracea/metabolism , Time Factors
9.
Photosynth Res ; 130(1-3): 167-182, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26932934

ABSTRACT

Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, 1H-NMR, 13C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.


Subject(s)
Antimony/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Glutathione Reductase/antagonists & inhibitors , Photosystem II Protein Complex/drug effects , Antimony/chemistry , Chloroplasts/drug effects , Herbicides/pharmacology , Magnetic Resonance Spectroscopy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...