Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 20(7): 5071-5077, 2024 07.
Article in English | MEDLINE | ID: mdl-38924247

ABSTRACT

INTRODUCTION: Sequence variants in TMEM106B have been associated with an increased risk of developing dementia. METHODS: As part of our efforts to generate a set of mouse lines in which we replaced the mouse Tmem106b gene with a human TMEM106B gene comprised of either a risk or protective haplotype, we conducted an in-depth sequence analysis of these alleles. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge portal) and full genome sequences (1000 Genomes). RESULTS: We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. DISCUSSION: We conclude that this risk haplotype arose early in human development with a single Alu-insertion event within a unique haplotype context. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia. HIGHLIGHTS: We conducted an in-depth sequence analysis of (1) a risk and (2) a protective haplotype of the human TMEM106B gene. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge Portal) and full genome sequences (1000 Genomes). We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia.


Subject(s)
3' Untranslated Regions , Alu Elements , Dementia , Haplotypes , Membrane Proteins , Nerve Tissue Proteins , Dementia/genetics , Humans , Animals , 3' Untranslated Regions/genetics , Mice , Alu Elements/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Genetic Predisposition to Disease/genetics , Mice, Transgenic , Alleles , Mutagenesis, Insertional
2.
Front Vet Sci ; 10: 1079019, 2023.
Article in English | MEDLINE | ID: mdl-37266381

ABSTRACT

Feline oral squamous cell carcinoma (FOSCC) is a cancer of the squamous cell lining in the oral cavity and represents up to 80% of all oral cancers in cats, with a poor prognosis. We have used whole exome sequencing (WES) and RNA sequencing of the tumor to discover somatic mutations and gene expression changes that may be associated with FOSCC occurrence. FOSCC offers a potential comparative model to study human head and neck squamous cell carcinoma (HNSCC) due to its similar spontaneous formation, and morphological and histological features. In this first study using WES to identify somatic mutations in feline cancer, we have identified tumor-associated gene mutations in six cats with FOSCC and found some overlap with identified recurrently mutated genes observed in HNSCC. Four samples each had mutations in TP53, a common mutation in all cancers, but each was unique. Mutations in other cellular growth control genes were also found such as KAT2B and ARID1A. Enrichment analysis of FOSCC gene expression profiles suggests a molecular similarity to human OSCC as well, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways. In this preliminary study, we present exome and transcriptome results that further our understanding of FOSCC.

3.
Sci Rep ; 11(1): 7159, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785770

ABSTRACT

Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.


Subject(s)
Cat Diseases/genetics , Exome Sequencing , Exome/genetics , Genetic Predisposition to Disease , Animals , Cats , Female , Male , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...