Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(18): 54095-54105, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36869947

ABSTRACT

During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.


Subject(s)
Antineoplastic Agents , Coal Mining , Occupational Exposure , Humans , Occupational Exposure/analysis , Mouth Mucosa , Micronucleus Tests/methods , DNA Damage , Lymphocytes , Antineoplastic Agents/pharmacology
2.
Ecotoxicol Environ Saf ; 212: 111935, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33578128

ABSTRACT

During the welding activities many compounds are released, several of these cause oxidative stress and inflammation and some are considered carcinogenic, in fact the International Agency for Research on Cancer established that welding fumes are carcinogenic to humans. The aim of the present study was to analyze the cytotoxic and genotoxic potential of exposure to welding fumes and to determine concentrations of metals in blood and urine of occupationally exposed workers. We included 98 welders and 100 non-exposed individuals. Our results show significant increase in the frequency of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD) and necrotic cells (NECR) in cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, as well as in the telomere length (TL) of the exposed individuals with respect to the non-exposed group. In the analysis of the concentrations of inorganic elements using PIXE method, were found higher concentrations of Cr, Fe and Cu in the urine, and Cr, Fe, Mg, Al, S, and Mn in the blood in the exposed group compared to the non-exposed group. A significant correlation was observed between MN and age and between NPB and years of exposure. Additionally, we found a significant correlation for TL in relation to MN, NPB, age and years of exposure in the exposed group. Interestingly, a significant correlation between MN and the increase in the concentration of Mg, S, Fe and Cu in blood samples of the exposed group, and between MN and Cr, Fe, Ni and Cu in urine. Thus, our findings may be associated with oxidative and inflammatory damage processes generated by the components contained in welding fumes, suggesting a high occupational risk in welding workers.


Subject(s)
Air Pollutants, Occupational/analysis , Biological Assay , Micronucleus Tests/methods , Occupational Exposure/analysis , Telomere , Biomarkers/analysis , Cytokinesis , DNA Damage , Humans , Lymphocytes , Oxidative Stress , Welding
3.
Environ Sci Pollut Res Int ; 27(16): 20516-20526, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32246425

ABSTRACT

Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 µm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.


Subject(s)
Occupational Exposure , Vehicle Emissions , DNA Damage , DNA Repair , Humans , Mouth Mucosa , Polymorphism, Genetic , X-ray Repair Cross Complementing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...