Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454719

ABSTRACT

The objective was to conduct a bio-mapping of microbial indicators to determine statistical process control (SPC) parameters at a beef processing plant to establish microbiological baselines and process control parameters to support food safety management decisions. EZ-ReachTM swabs were used to collect 100 cm2 area samples at seven different locations throughout the beef processing line at four different regions on the carcass. Each of the eight sampling days evaluated included three samples collected per sampling location/carcass region for a total of 84 samples per day. Enumeration of total aerobic bacteria, Enterobacteriaceae, and Escherichia coli was performed on each sample. Microbial SPC parameters were estimated for each sampling point. Statistical differences between sampling points for all carcass locations (p < 0.001) followed an overall trend with higher values at pre- and post-evisceration with a continuous decrease until final interventions with a slight increase in counts during the chilling process and a final increase after fabrication. Variability at sampling points is the result of the nature of the process and highlights open opportunities for improvement of the food safety system. Microbial baselines and SPC parameters will help support decision making for continuous process improvement, validation of intervention schemes, and corrective action implementation for food safety management.

2.
Brain Behav ; 10(9): e01749, 2020 09.
Article in English | MEDLINE | ID: mdl-32666677

ABSTRACT

INTRODUCTION: The oxytocin (Oxt) system, while typically associated with the neural regulation of social behaviors, also plays a role in an individual's vulnerability to develop alcohol use disorders (AUD). In humans, changes to the Oxt system, due to early life experience and/or genetic mutations, are associated with increased vulnerability to AUD. While a considerable amount is known about Oxt's role in AUD in males, less is known or understood, about how Oxt may affect AUD in females, likely due to many clinical and preclinical studies of AUD not directly considering sex as a biological variable. This is unfortunate given that females are more vulnerable to the effects of alcohol and have increased alcohol consumption, as compared to males. Therefore, in the current study we wanted to determine whether genetic disruption of the Oxt receptor (Oxtr), that is, Oxtr knockout (-/-) mice, affected stress-induced alcohol consumption in males and females. We hypothesized that genetic disruption of the Oxtr would result in increased stress-induced alcohol consumption in both males and females compared to wild-type (+/+) controls. Though, we predicted that these disruptions might be greater in female Oxtr -/- mice. METHODS: To test this hypothesis, a two-bottle preference test was utilized along with the forced swim test (FST), and pre- and poststress alcohol consumption and preference measured within each sex (males and females were run separately). As a follow-up experiment, a taste preference test, to control for possible genotypic differences in taste, was also performed. RESULTS: In males, we found no significant genotypic differences in alcohol consumption or preference. However, in females, we found that genetic disruption of the Oxtr resulted in a greater consumption of alcohol both pre- and poststress compared to controls. CONCLUSION: These data suggest that in females, disruptions in Oxt signaling may contribute to increased vulnerability to alcohol-associated addiction.


Subject(s)
Alcoholism , Receptors, Oxytocin , Alcohol Drinking/genetics , Animals , Female , Mice , Mice, Knockout , Oxytocin/genetics , Receptors, Oxytocin/genetics
3.
Front Neurosci ; 11: 567, 2017.
Article in English | MEDLINE | ID: mdl-29085277

ABSTRACT

The arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part of the mammalian hormonal stress axis. The Avpr1b is prominent in hippocampal CA2 pyramidal cells and in the anterior pituitary corticotrophs. Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social forms of aggression, and modulation of the hypothalamic-pituitary-adrenal axis, particularly under conditions of acute stress. Further, work in humans suggests that the Avpr1b may play a role in human neuropsychiatric disorders and its modulation may have therapeutic potential. This paper reviews what is known about the role of the Avpr1b in the context of social behaviors, the stress axis, and human neuropsychiatric disorders. Further, possible mechanisms for how Avpr1b activation within the hippocampus vs. Avpr1b activation within anterior pituitary may interact with one another to affect behavioral output are proposed.

4.
Article in English | MEDLINE | ID: mdl-27656162

ABSTRACT

Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.

5.
Behav Brain Funct ; 11(1): 34, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26537115

ABSTRACT

BACKGROUND: Fibroblast growth factors (FGFs) are crucial signaling molecules that direct the development of the vertebrate brain. FGF8 gene signaling in particular, may be important for the development of the hypothalamus-pituitary-adrenal (HPA)-axis. Indeed, newborn Fgf8 hypomorphic mice harbor a major reduction in the number of vasopressin (VP) neurons in the paraventricular nucleus (PVN), the central output component of the HPA-axis. Additionally, recent studies indicated that adult heterozygous ((+/neo)) Fgf8 hypomorphic mice exhibit more anxiety-like behaviors than wildtype (WT) mice. These studies led us to investigate whether Fgf8 hypomorphy abrogated VP and/or corticotropin-releasing hormone (CRH) neuronal development in the postnatal day (PN) 21 and adult mouse PVN. Furthermore, we studied whether Fgf8 hypomorphy disrupted HPA responsiveness in these mice. METHODS: Using immunohistochemistry, we examined the development of VP and CRH neurons located in the PVN of PN 21 and adult Fgf8 (+/neo) mice. Moreover, we used a restraint stress (RS) paradigm and measured corticosterone levels with enzyme immunoassays in order to assess HPA axis activation. RESULTS: The number of VP neurons in the PVN did not differ between WT and Fgf8 (+/neo) mice on PN 21 and in adulthood. In contrast, CRH immunoreactivity was much higher in Fgf8 (+/neo) mice than in WT mice on PN 21, this difference was no longer shown in adult mice. RS caused a higher increase in corticosterone levels in adult Fgf8 (+/neo) mice than in WT mice after 15 min, but no difference was seen after 45 min. CONCLUSIONS: First, Fgf8 hypomorphy did not eliminate VP and CRH neurons in the mouse PVN, but rather disrupted the postnatal timing of neuropeptide expression onset in PVN neurons. Second, Fgf8 hypomorphy may, in part, be an explanation for affective disorders involving hyperactivity of the HPA axis, such as anxiety.


Subject(s)
Fibroblast Growth Factor 8/physiology , Neuroendocrine Cells/physiology , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/growth & development , Animals , Cell Count , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Fibroblast Growth Factor 8/genetics , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Mice, Transgenic , Neuroendocrine Cells/cytology , Pituitary-Adrenal System/physiology , Restraint, Physical , Vasopressins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...