Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 30(5-6): 541-558, 2020.
Article in English | MEDLINE | ID: mdl-31903978

ABSTRACT

This study investigated the effect of three different parameters of a dental implant on stress and strain values in the peri-implant bone by finite element analysis. In this work, the effect of diameter, length and elastic modulus on the biomechanical behavior of a new dental implant was simulated using the finite element method. A three-dimensional model of a mandible segment corresponding to the premolar region and twelve dental implant models were obtained. Loads in three directions were distributed on the surface of the coronal area of the dental implants. The dental implant models were obtained in the FreeCAD 0.16 software and the simulations were made using the Abaqus/CAE software. In all cases, higher stress concentrations were obtained in the peri-implant cortical bone between 40.6 and 62.8 MPa, while the highest levels of strain were observed in the peri-implant trabecular bone between 0.002544 and 0.003873. In general, the highest von Mises equivalent stress values were observed in the peri-implant cortical bone. However, in this bone, both the maximum von Mises equivalent stress values and the von Mises strain are similar or inferior to those reported in different studies by finite element for other models of dental implants under immediate loading. Maximum von Mises strain values were observed in peri-implant trabecular bone. However, in this bone strains levels were obtained that maintain bone density or increase it. The effect of the three simulated variables (implant diameter, length, and elastic modulus) have a statistically significant influence on the von Mises equivalent stress and in von Mises strain values.


Subject(s)
Bone-Implant Interface , Dental Implants , Dental Prosthesis Design , Dental Stress Analysis/methods , Finite Element Analysis , Biomechanical Phenomena/physiology , Bone-Implant Interface/pathology , Bone-Implant Interface/physiopathology , Dental Implants/standards , Elastic Modulus , Humans , Imaging, Three-Dimensional , Mandible/pathology , Mandible/physiology , Models, Dental , Stress, Mechanical , Weight-Bearing/physiology
2.
Chem Sci ; 9(9): 2581-2588, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29719713

ABSTRACT

A new synthetic strategy for the development of multivalent antibacterial glycoconjugate vaccines is described. The approach comprises the utilization of an isocyanide-based multicomponent process for the conjugation of functionalized capsular polysaccharides of S. pneumoniae and S. Typhi to carrier proteins such as diphtheria and tetanus toxoids. For the first time, oxo- and carboxylic acid-functionalized polysaccharides could be either independently or simultaneously conjugated to immunogenic proteins by means of the Ugi-multicomponent reaction, thus leading to mono- or multivalent unimolecular glycoconjugates as vaccine candidates. Despite the high molecular weight of the two or three reacting biomolecules, the multicomponent bioconjugation proved highly efficient and reproducible. The Ugi-derived glycoconjugates showed notable antigenicity and elicited good titers of functional specific antibodies. To our knowledge, this is the only bioconjugation method that enables the incorporation of two different polysaccharidic antigens to a carrier protein in a single step. Applications in the field of self-adjuvanting, eventually anticancer, multicomponent vaccines are foreseeable.

3.
Vaccine ; 30(49): 7090-6, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23036500

ABSTRACT

Capsular polysaccharides are important virulence factors of Streptococcus pneumoniae. The polysaccharide has been used as a component of vaccines against pneumococcal diseases either as plain polysaccharide or better conjugated to a protein. The last one is the vaccine of choice to target child protection. The immune responses depend on several polysaccharide physicochemical properties that can be affected during either purification or modification in the case of conjugate vaccines. In serotype 18C, the repeating unit has a complex structure having a branched pentasaccharide with two apparently labile subtituents: glycerol-phosphate and O-acetyl group. The loss of these groups may potentially reduce the ability of the 18C polysaccharide to induce the desired immune response. Therefore, the relationship of both groups with the antigenicity and immunogenicity of 18C capsular polysaccharide is explored. It is shown that glycerol-phosphate must be preserved for conserving adequate antigenicity of the 18C capsular polysaccharide. At the same time, it was proved that O-acetyl groups do not play any role for the antigenicity and immunogenicity.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/immunology , Animals , Humans , Phospholipid Ethers/chemistry , Phospholipid Ethers/immunology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...