Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinorg Chem Appl ; 2019: 8757149, 2019.
Article in English | MEDLINE | ID: mdl-31143203

ABSTRACT

The biosorption of Co(II) on three fungal biomasses: Paecilomyces sp., Penicillium sp., and Aspergillus niger, was studied in this work. The fungal biomass of Paecilomyces sp. showed the best results, since it removes 93% at 24 h of incubation, while the biomasses of Penicillium sp. and Aspergillus niger are less efficient, since they remove the metal 77.5% and 70%, respectively, in the same time of incubation, with an optimum pH of removal for the three analyzed biomasses of 5.0 ± 0.2 at 28°C. Regarding the temperature of incubation, the most efficient biomass was that of Paecilomyces sp., since it removes 100%, at 50°C, while the biomasses of Penicillium sp. and Aspergillus niger remove 97.1% and 94.1%, at the same temperature, in 24 hours of incubation. On the contrary, if the concentration of the metal is increased, the removal capacity for the three analyzed biomasses decreases; if the concentration of the bioadsorbent is increased, the removal of the metal also increases. It was observed that, after 4 and 7 days of incubation, 100%, 100%, and 96.4% of Co(II) present in naturally contaminated water were removed, respectively.

2.
Bioinorg Chem Appl ; 2018: 3457196, 2018.
Article in English | MEDLINE | ID: mdl-30515192

ABSTRACT

The objective of this work was to study the resistance and removal capacity of heavy metals by the fungus Aspergillus niger. We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.2%), fluor (83%), cobalt (71.4%), fairly silver (48%), and copper (37%). The ideal conditions for the removal of 100 mg/L of the heavy metals were 28°C, pH between 4.0 and 5.5, 100 ppm of heavy metal, and 1 g of fungal biomass.

SELECTION OF CITATIONS
SEARCH DETAIL
...