Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(11): e0165296, 2016.
Article in English | MEDLINE | ID: mdl-27824875

ABSTRACT

Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5-7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.


Subject(s)
Cell Adhesion/drug effects , Hydrofluoric Acid/chemistry , Titanium/chemistry , Cell Line , Humans , Materials Testing/methods , Microscopy, Electron, Scanning , Surface Properties , Wettability
2.
Langmuir ; 32(45): 11918-11927, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27779881

ABSTRACT

Colloidal interactions have been extensively studied due to the wide number of applications where colloids are present. In general, the electric double layer force and the van der Waals interaction dominate the net force acting between two colloids at large separation distances. However, it is well accepted that some other phenomena, especially those acting at short separation distances, might be relevant and induce substantial changes in the force profiles. Within these phenomena, those related to the surface contact angle, the hydration degree of the ions, or the pH, may dominate the force profiles features, not only at short distances. In this paper, we analyzed the effect of the pH and counterion type on the long-range as well as short-range forces between polystyrene colloidal particles by using the colloidal probe technique based on AFM. Our results confirm that the features of the force profiles between polystyrene surfaces are strongly affected by the pH and hydration degree of the counterions in solution. Additionally, we performed a study of the role of the pH on the wettability properties of hydrated and nonhydrated polystyrene sheets to scan the wettability properties of this material with pH. Contact angle measurements confirmed that the polystyrene surface is hydrophobic in aqueous solutions over the entire range of pHs investigated. These results are in good agreement with the features observed in the force profiles at low pH. At high pH, a short-range repulsion similar to the one observed for hydrophilic materials is observed. This repulsion scales with the pH, and it also depends on the hydration degree of the ions in solution. This way, the short-range forces between polystyrene surfaces may be tunable with the pH, and its origin does not seem to be related to the hydrophobicity of the material.

3.
Langmuir ; 31(19): 5326-32, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25909691

ABSTRACT

We present results for the most stable contact angle using a numerical implementation of the tilting plate method of Montes et al. (Montes Ruiz-Cabello, F. J.; Rodriguez-Valverde, M. A.; Cabrerizo-Vilchez, M. Soft Matter 2011, 7, 10457-10461). Comparison with the experimental results is made, obtaining a good agreement in most situations. In addition, the evolution of the contact angles of a tilted drop with a fixed circular line is analyzed. This analysis allows one to theoretically predict the most stable contact angle for tilted drops.

4.
Soft Matter ; 10(19): 3471-6, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24647647

ABSTRACT

In this work we report an experimental study on the surface activity and the collective behaviour of colloidally stable Janus-like silver particles at the air-water interface. The colloidal stability of silver nanoparticles has been enhanced using different capping ligands. Two polymers coated the silver particles: 11-mercaptoundecanoic acid and 1-undecanthiol. These capping ligands adsorbed onto the particle surface are spontaneously rearranged at the air-water interface. This feature leads to Janus behaviour in the silver particles with amphiphilic character. The surface activity of the silver particles at the air-water interface has been measured using pendant drop tensiometry. The Janus-like silver particles revealed a surface activity similar to that shown by conventional amphiphilic molecules but with much larger area per particle. The variation of the surface pressure with the area per particle was described properly using the Frumkin isotherm up to the collapse state. Furthermore, oscillating pendant drop tensiometry provided very useful data on the rheological properties of Janus particle monolayers; these properties depended on the lateral interactions between particles and were closely related to the monolayer microstructure. We revealed the close relationship between the collective behavior and the surface activity of Janus-like silver particles.

5.
Adv Colloid Interface Sci ; 206: 320-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24140073

ABSTRACT

It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

6.
Langmuir ; 27(14): 8748-52, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21702494

ABSTRACT

Currently, there is no conclusive evidence regarding the global equilibrium condition of vibrated drops. However, it is well-known that vibration of sessile drops effectively reduces the contact angle hysteresis. In this work, applying a recent methodology for evaluating the most-stable contact angle, we examined the impact of the type of excitation signal (random signal versus periodical signal) on the values of the most-stable contact angle for polymer surfaces. Using harmonic signals, the oscillation frequency affected the postvibration contact angle. Instead, the white noise signal enabled sessile drops to relax regardless of their initial configuration. In spite of that, the values of most-stable contact angle obtained with different signals mostly agreed. We concluded that not only the amount of relaxation can be important for relaxing a sessile drop but also the rate of relaxation. Together with receding contact angle, most-stable contact angle, measured with the proposed methodology, was able to capture the thermodynamic changes of "wetted" polymer surfaces.

7.
Langmuir ; 27(15): 9638-43, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21644547

ABSTRACT

Quasi-static experiments using sessile drops and captive bubbles are the most employed methods for measuring advancing and receding contact angles on real surfaces. These observable contact angles are the most easily accessible and reproducible. However, some properties of practical surfaces induce certain phenomena that cause a built-in uncertainty in the estimation of advancing and receding contact angles. These phenomena are well known in surface thermodynamics as stick-slip phenomena. Following the work of Marmur (Marmur, A. Colloids Surf., A 1998, 136, 209-215), where the stick-slip effects were studied with regard to sessile drops and captive bubbles on heterogeneous surfaces, we developed a novel extension of this study by adding the effects of roughness to both methods for contact angle measurement. We found that the symmetry between the surface roughness problem and the chemical heterogeneity problem breaks down for drops and bubbles subjected to stick-slip effects.

8.
Adv Colloid Interface Sci ; 138(2): 84-100, 2008 May 19.
Article in English | MEDLINE | ID: mdl-18279819

ABSTRACT

Contact angle variability, leading to errors in interpretation, arises from various sources. Contact angle hysteresis (history-dependent wetting) and contact angle multiplicity (corrugation of three-phase contact line) are irrespectively the most frequent causes of this uncertainty. Secondary effects also derived from the distribution of chemical defects on solid surfaces, and so due to the existence of boundaries, are the known "stick/jump-slip" phenomena. Currently, the underlying mechanisms in contact angle hysteresis and their connection to "stick/jump-slip" effects and the prediction of thermodynamic contact angle are not fully understood. In this study, axial models of smooth heterogeneous surface were chosen in order to mitigate contact angle multiplicity. For each axial pattern, advancing, receding and equilibrium contact angles were predicted from the local minima location of the system free energy. A heuristic model, based on the local Young equation for spherical drops on patch-wise axial patterns, was fruitfully tested from the results of free-energy minimization. Despite the very simplistic surface model chosen in this study, it allowed clarifying concepts usually misleading in wetting phenomena.


Subject(s)
Alkanes/chemistry , Fluorine/chemistry , Surface-Active Agents/chemistry , Adsorption , Chemistry/methods , Colloids/chemistry , Crystallization , Micelles , Microscopy, Atomic Force , Nanoparticles , Silicon/chemistry , Solvents/chemistry , Surface Properties , Temperature , Wettability
9.
Adv Colloid Interface Sci ; 136(1-2): 93-108, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17825782

ABSTRACT

The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.


Subject(s)
Hydrocarbons/chemistry , Emulsions/chemistry , Image Processing, Computer-Assisted , Kinetics , Microscopy/methods , Particle Size , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...