Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1113858, 2023.
Article in English | MEDLINE | ID: mdl-37033927

ABSTRACT

Introduction: A high frequency of mutations affecting the gene encoding Herpes Virus Entry Mediator (HVEM, TNFRSF14) is a common clinical finding in a wide variety of human tumors, including those of hematological origin. Methods: We have addressed how HVEM expression on A20 leukemia cells influences tumor survival and its involvement in the modulation of the anti-tumor immune responses in a parental into F1 mouse tumor model of hybrid resistance by knocking-out HVEM expression. HVEM WT or HVEM KO leukemia cells were then injected intravenously into semiallogeneic F1 recipients and the extent of tumor dissemination was evaluated. Results: The loss of HVEM expression on A20 leukemia cells led to a significant increase of lymphoid and myeloid tumor cell infiltration curbing tumor progression. NK cells and to a lesser extent NKT cells and monocytes were the predominant innate populations contributing to the global increase of immune infiltrates in HVEM KO tumors compared to that present in HVEM KO tumors. In the overall increase of the adaptive T cell immune infiltrates, the stem cell-like PD-1- T cells progenitors and the effector T cell populations derived from them were more prominently present than terminally differentiated PD-1+ T cells. Conclusions: These results suggest that the PD-1- T cell subpopulation is likely to be a more relevant contributor to tumor rejection than the PD-1+ T cell subpopulation. These findings highlight the role of co-inhibitory signals delivered by HVEM upon engagement of BTLA on T cells and NK cells, placing HVEM/BTLA interaction in the spotlight as a novel immune checkpoint for the reinforcement of the anti-tumor responses in malignancies of hematopoietic origin.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , Cell Line , Killer Cells, Natural/metabolism , Programmed Cell Death 1 Receptor/genetics , Receptors, Immunologic/metabolism
2.
Front Immunol ; 13: 887348, 2022.
Article in English | MEDLINE | ID: mdl-35795681

ABSTRACT

The contribution of natural killer (NK) cells to tumor rejection in the context of programmed death-ligand 1/programmed death 1 (PD-L1/PD-1) blockade is a matter of intense debate. To elucidate the role of PD-L1 expression on tumor cells and the functional consequences of engaging PD-1 receptor on cytotoxic cells, PD-L1 expression was genetically inactivated and WT or PD-L1-deficient parental tumor cells were adoptively transferred intravenously into F1 recipients. The engraftment of PD-L1-deficient A20 tumor cells in the spleen and liver of F1 recipients was impaired compared with A20 PD-L1 WT tumor counterparts. To elucidate the mechanism responsible for this differential tumor engraftment and determine the relevance of the role of the PD-L1/PD-1 pathway in the interplay of tumor cells/NK cells, a short-term competitive tumor implantation assay in the peritoneal cavity of semiallogeneic F1 recipients was designed. The results presented herein showed that NK cells killed target tumor cells with similar efficiency regardless of PD-L1 expression, whereas PD-L1 expression on A20 tumor cells conferred significant tumor protection against rejection by CD8 T cells confirming the role of the co-inhibitory receptor PD-1 in the modulation of their cytotoxic activity. In summary, PD-L1 expression on A20 leukemia tumor cells modulates CD8 T-cell-mediated responses to tumor-specific antigens but does not contribute to inhibit NK cell-mediated hybrid resistance, which correlates with the inability to detect PD-1 expression on NK cells neither under steady-state conditions nor under inflammatory conditions.


Subject(s)
Immune System Diseases , Leukemia , Neoplasms , B7-H1 Antigen , Humans , Immune System Diseases/metabolism , Killer Cells, Natural , Leukemia/genetics , Leukemia/metabolism , Leukemia/therapy , Neoplasms/pathology , Parents , Programmed Cell Death 1 Receptor
3.
Sci Rep ; 12(1): 8348, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589917

ABSTRACT

Donor derived regulatory T lymphocytes and the JAK1/2 kinase inhibitor ruxolitinib are currently being evaluated as therapeutic options in the treatment of chronic graft versus host disease (cGvHD). In this work, we aimed to determine if the combined use of both agents can exert a synergistic effect in the treatment of GvHD. For this purpose, we studied the effect of this combination both in vitro and in a GvHD mouse model. Our results show that ruxolitinib favors the ratio of thymic regulatory T cells to conventional T cells in culture, without affecting the suppressive capacity of these Treg. The combination of ruxolitinib with Treg showed a higher efficacy as compared to each single treatment alone in our GvHD mouse model in terms of GvHD incidence, severity and survival without hampering graft versus leukemia effect. This beneficial effect correlated with the detection in the bone marrow of recipient mice of the infused donor allogeneic Treg after the adoptive transfer.


Subject(s)
Graft vs Host Disease , Animals , Disease Models, Animal , Graft vs Host Disease/drug therapy , Mice , Nitriles , Pyrazoles , Pyrimidines , T-Lymphocytes, Regulatory/transplantation
4.
Transl Res ; 239: 103-123, 2022 01.
Article in English | MEDLINE | ID: mdl-34461306

ABSTRACT

CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.


Subject(s)
Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Graft Rejection/etiology , Receptors, Immunologic/immunology , 4-1BB Ligand/metabolism , Allografts , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CRISPR-Cas Systems , Cell Differentiation , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Gene Expression Regulation , Genes, MHC Class I , Graft Rejection/immunology , Killer Cells, Natural/immunology , Lectins, C-Type/metabolism , Mice, Inbred Strains , Mice, Knockout , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Skin Transplantation , Thymocytes/immunology
6.
Int J Mol Sci ; 21(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397343

ABSTRACT

Regulatory T cells (Tregs) are essential for the maintenance of tolerance to self and non-self through cell-intrinsic and cell-extrinsic mechanisms. Peripheral Tregs survival and clonal expansion largely depend on IL-2 and access to co-stimulatory signals such as CD28. Engagement of tumor necrosis factor receptor (TNFR) superfamily members, in particular TNFR2 and DR3, contribute to promote peripheral Tregs expansion and sustain their survival. This property can be leveraged to enhance tolerance to allogeneic transplants by tipping the balance of Tregs over conventional T cells during the course of immune reconstitution. This is of particular interest in peri-transplant tolerance induction protocols in which T cell depletion is applied to reduce the frequency of alloreactive T cells or in conditioning regimens that allow allogeneic bone marrow transplantation. These conditioning regimens are being implemented to limit long-term side effects of continuous immunosuppression and facilitate the establishment of a state of donor-specific tolerance. Lymphopenia-induced homeostatic proliferation in response to cytoreductive conditioning is a window of opportunity to enhance preferential expansion of Tregs during homeostatic proliferation that can be potentiated by agonist stimulation of TNFR.


Subject(s)
Bone Marrow Transplantation , Lymphocyte Depletion , Receptors, Tumor Necrosis Factor, Member 25/physiology , Receptors, Tumor Necrosis Factor, Type II/physiology , T-Lymphocytes, Regulatory/immunology , Abatacept/pharmacology , Adoptive Transfer , Allografts , Animals , Cell Differentiation , Cell Division , Graft Rejection/prevention & control , Heart Transplantation , Homeostasis , Humans , Immune Tolerance , Lymphocyte Transfusion , Lymphopenia/etiology , Lymphopenia/immunology , Mice , Models, Immunological , T-Lymphocytes, Regulatory/drug effects , Transplantation Conditioning , Transplantation Immunology , Tumor Necrosis Factor-alpha/physiology
7.
Cancer Immunol Immunother ; 69(6): 1001-1014, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32088772

ABSTRACT

The expression of PD-L1 on tumor cells or within the tumor microenvironment has been associated with good prognosis and sustained clinical responses in immunotherapeutic regimens based on PD-L1/PD-1/CD80 immune checkpoint blockade. To look into the current controversy in cancer immunotherapy of the relative importance of PD-L1 expression on tumor cells versus non-tumor cells of the tumor microenvironment, a hematological mouse tumor model was chosen. By combining a genetic CRISPR/Cas9 and immunotherapeutic approach and using a syngeneic hematopoietic transplantable tumor model (E.G7-cOVA tumor cells), we demonstrated that dual blockade of PD-L1 interaction with PD-1 and CD80 enhanced anti-tumor immune responses that either delayed tumor growth or led to its complete eradication. PD-L1 expression on non-tumor cells of the tumor microenvironment was required for the promotion of tumor immune escape and its blockade elicited potent anti-tumor responses to PD-L1 WT and to PD-L1-deficient tumor cells. PD-L1+ tumors implanted in PD-L1-deficient mice exhibited delayed tumor growth independently of PD-L1 blockade. These findings emphasize that PD-L1 expression on non-tumor cells plays a major role in this tumor model. These observations should turn our attention to the tumor microenvironment in hematological malignancies because of its unappreciated contribution to create a conditioned niche for the tumor to grow and evade the anti-tumor immune response.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunotherapy/methods , Programmed Cell Death 1 Receptor/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Disease Models, Animal , Humans , Mice , Transfection
8.
Nat Commun ; 10(1): 3258, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332204

ABSTRACT

CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160-/- mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160-/- mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160-/- mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160-/- mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activation.


Subject(s)
Antigens, CD/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Liver/metabolism , Natural Killer T-Cells/metabolism , Receptors, Immunologic/metabolism , Animals , Antigens, CD/genetics , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Concanavalin A/administration & dosage , Concanavalin A/toxicity , Cytokines/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Galactosylceramides/administration & dosage , Galactosylceramides/toxicity , Liver/drug effects , Liver/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Receptors, Immunologic/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Survival Analysis
10.
Cell Mol Immunol ; 16(3): 314, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30635646

ABSTRACT

In this article, one of the grating agencies requested us to incorporate the information, Spanish Government and co-funded by European Union ERDF/ESF, "Investing in your future", in the acknowledgments section. The correct acknowledgement is as follows: "This work has been supported by grants of the Spanish Ministry of Health (Fondo de Investigaciones Sanitarias, PI13/00029, Spanish Government and co-funded by European Union ERDF/ESF, "Investing in your future"), Department of Education of Castilla and Leon Regional Government (Grant# LE093U13) and Mutua Madrileña Foundation (Basic research grants 2012) to J.I.R.B.; by Miguel Servet National Program (Ministry of National Health) CP12/03063 and by Gerencia Regional de Salud GRS963/A/2014 to M.L.R.G. We are particularly grateful to Mr. Leonides Alaiz for outstanding animal husbandry." The authors regret the errors.

11.
Cell Mol Immunol ; 14(6): 497-510, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26924526

ABSTRACT

The molecular pathways contributing to humoral-mediated allograft rejection are poorly defined. In this study, we assessed the role of the herpesvirus entry mediator/B- and T-lymphocyte attenuator (HVEM/BTLA) signalling pathway in the context of antibody-mediated allograft rejection. An experimental setting was designed to elucidate whether the blockade of HVEM/BTLA interactions could modulate de novo induction of host antidonor-specific antibodies during the course of graft rejection. To test this hypothesis, fully allogeneic major histocompatibility complex-mismatched skin grafts were transplanted onto the right flank of recipient mice that were treated with isotype control, anti-CD40L or modulatory antibodies of the HVEM/BTLA signalling pathway. The frequencies of CD4 T follicular helper (Tfh) cells (B220-, CD4+ CXCR5+ PD-1high), extrafollicular helper cells (B220-, CD4+ CXCR5- PD-1+ and PD-1-) and germinal centre (GC) B cells (B220+Fas+ GL7+) were analysed by flow cytometry in draining and non-draining lymph nodes at day 10 post transplantation during the acute phase of graft rejection. The host antidonor isotype-specific humoral immune response was also assessed. Whereas blockade of the CD40/CD40L pathway was highly effective in preventing the allogeneic humoral immune response, antibody-mediated blockade of the HVEM/BTLA-interacting pathway affected neither the expansion of Tfh cells nor the expansion of GC B cells. Consequently, the course of the host antidonor antibody-mediated response proceeded normally, without detectable evidence of impaired development. In summary, these data indicate that HVEM/BTLA interactions are dispensable for the formation of de novo host antidonor isotype-specific antibodies in transplantation.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Graft Rejection/immunology , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Skin Transplantation , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibodies, Blocking/administration & dosage , Antibody-Dependent Cell Cytotoxicity , CD40 Antigens/immunology , CD40 Ligand/immunology , Female , Humans , Immunity, Humoral , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor, Member 14/immunology , Signal Transduction , Transplantation, Homologous
12.
Transl Res ; 181: 83-95.e3, 2017 03.
Article in English | MEDLINE | ID: mdl-27702550

ABSTRACT

CD160 is a glycosylphosphatidylinositol-anchored protein of the immunoglobulin superfamily. It exhibits a pattern of expression coincident in humans and mice that is mainly restricted to cytotoxic cells and to all intestinal intraepithelial T lymphocytes. B- and T-lymphocyte attenuator (BTLA) and CD160 interact with cysteine-rich domain 1 of the extracellular region of Herpesvirus entry mediator (HVEM). CD160 engagement by HVEM can deliver inhibitory signals to a small subset of human CD4 T cells and attenuate its proliferation and cytokine secretion, but can also costimulate natural killer cells or intraepithelial lymphocytes. In turn, CD160 and BTLA can also function as agonist ligands being capable of costimulating T cells through membrane HVEM. Based on the restricted pattern of CD160 expression in cytotoxic cells, we postulated that CD160 may represent a suitable target for immune intervention in the setting of transplantation to modulate allogeneic cytotoxic responses. We demonstrated that in vivo administration of anti-CD160 antibody in combination with anti-CD40 L antibody to limit CD4 T-cell help modulated cytotoxic responses in a major histocompatibility complex class I mismatched model of allogeneic skin graft transplantation (bm1 donor to C57BL/6 recipient) and significantly prolonged graft survival. The implementation of this strategy in transplantation may reinforce current immunosuppression protocols and contribute to a better control of CD8 T-cell responses.


Subject(s)
Antigens, CD/metabolism , Cytotoxicity, Immunologic , Graft Survival/immunology , Histocompatibility Antigens Class I/metabolism , Immunomodulation , Receptors, Immunologic/metabolism , Skin Transplantation , Animals , Antibodies, Monoclonal/biosynthesis , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , HEK293 Cells , Humans , Hybridomas/metabolism , Immunologic Memory , Killer Cells, Natural/immunology , Lymph Nodes/metabolism , Mice, Inbred C57BL , Receptors, Immunologic/immunology
13.
MAbs ; 8(3): 478-90, 2016.
Article in English | MEDLINE | ID: mdl-26752542

ABSTRACT

Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFRSF14) and the lymphotoxin ß receptor (LTßR, TNFRSF3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTßR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTßR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.


Subject(s)
Adoptive Transfer , CD8-Positive T-Lymphocytes , Cell Proliferation , Signal Transduction/immunology , Tumor Necrosis Factor Ligand Superfamily Member 14/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, Interleukin-7/immunology , Signal Transduction/genetics , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
14.
MAbs ; 8(1): 27-36, 2016.
Article in English | MEDLINE | ID: mdl-26418356

ABSTRACT

Antibodies are widely exploited as research/diagnostic tools and therapeutics. Despite providing exciting research opportunities, the multitude of available antibodies also offers a bewildering array of choice. Importantly, not all companies comply with the highest standards, and thus many reagents fail basic validation tests. The responsibility for antibodies being fit for purpose rests, surprisingly, with their user. This paper condenses the extensive experience of the European Monoclonal Antibody Network to help researchers identify antibodies specific for their target antigen. A stepwise strategy is provided for prioritising antibodies and making informed decisions regarding further essential validation requirements. Web-based antibody validation guides provide practical approaches for testing antibody activity and specificity. We aim to enable researchers with little or no prior experience of antibody characterization to understand how to determine the suitability of their antibody for its intended purpose, enabling both time and cost effective generation of high quality antibody-based data fit for publication.


Subject(s)
Antibodies, Monoclonal/chemistry , Biomedical Research , Databases, Factual , Animals , Europe , Humans
15.
Cell Transplant ; 24(12): 2423-33, 2015.
Article in English | MEDLINE | ID: mdl-25695936

ABSTRACT

Clinical trials have assessed the use of human bone marrow stromal cells (hBMSCs) for the treatment of immune-related disorders such as graft-versus-host disease (GVHD). In the current study, we show that GFP(+)-transduced hBMSCs generated from bone marrow migrate and differentiate into corneal tissue after subconjunctival injection in mice. Interestingly, these hBMSCs display morphological features of epithelial, stromal, and endothelial cells and appear at different layers and with different morphologies depending on their position within the epithelium. Furthermore, these cells display ultrastructural properties, such as bundles of intermediate filaments, interdigitations, and desmosomes with GFP(-) cells, which confirms their differentiation into corneal tissues. GFP(+)-transduced hBMSCs were injected at different time points into the right eye of lethally irradiated mice undergoing bone marrow transplantation, which developed ocular GVHD (oGVHD). Remarkably, hBMSCs massively migrate to corneal tissues after subconjunctival injection. Both macroscopic and histopathological examination showed minimal or no evidence of GVHD in the right eye, while the left eye, where no hBMSCs were injected, displayed features of GVHD. Thus, in the current study, we confirm that hBMSCs may induce their therapeutic effect at least in part by differentiation and regeneration of damaged tissues in the host. Our results provide experimental evidence that hBMSCs represent a potential cellular therapy to attenuate oGVHD.


Subject(s)
Bone Marrow Cells/cytology , Cornea/cytology , Corneal Transplantation/adverse effects , Graft vs Host Disease/prevention & control , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Adult , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Cell- and Tissue-Based Therapy/methods , Extracellular Matrix Proteins/metabolism , Female , Graft vs Host Disease/therapy , Green Fluorescent Proteins , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged
16.
Transplantation ; 98(11): 1165-74, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25226173

ABSTRACT

BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin ß receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin ß receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.


Subject(s)
Herpesviridae/metabolism , Lymphotoxin beta Receptor/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism , Animals , Antibodies, Monoclonal/immunology , CD4-Positive T-Lymphocytes/cytology , CD40 Antigens/antagonists & inhibitors , CD40 Ligand/antagonists & inhibitors , CD8-Positive T-Lymphocytes/cytology , Flow Cytometry , HEK293 Cells , Humans , Lymphocyte Activation , Mice , NIH 3T3 Cells , Protein Binding , Protein Structure, Tertiary
17.
Xenotransplantation ; 20(6): 397-406, 2013.
Article in English | MEDLINE | ID: mdl-23968542

ABSTRACT

Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.


Subject(s)
Immunity, Cellular , Immunoreceptor Tyrosine-Based Activation Motif/immunology , Transplantation, Heterologous , Animals , Antigens, Heterophile , Graft Rejection/immunology , Humans , Immunoreceptor Tyrosine-Based Activation Motif/genetics , Killer Cells, Natural/immunology , Macrophages/immunology , Models, Immunological , Signal Transduction/immunology , Sus scrofa/genetics , Sus scrofa/immunology , Transplantation Immunology
18.
J Immunol ; 188(10): 4885-96, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22490863

ABSTRACT

The cosignaling network mediated by the herpesvirus entry mediator (HVEM; TNFRSF14) functions as a dual directional system that involves proinflammatory ligand, lymphotoxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14), and the inhibitory Ig family member B and T lymphocyte attenuator (BTLA). To dissect the differential contributions of HVEM/BTLA and HVEM/LIGHT interactions, topographically-specific, competitive, and nonblocking anti-HVEM Abs that inhibit BTLA binding, but not LIGHT, were developed. We demonstrate that a BTLA-specific competitor attenuated the course of acute graft-versus-host reaction in a murine F(1) transfer semiallogeneic model. Selective HVEM/BTLA blockade did not inhibit donor T cell infiltration into graft-versus-host reaction target organs, but decreased the functional activity of the alloreactive T cells. These results highlight the critical role of HVEM/BTLA pathway in the control of the allogeneic immune response and identify a new therapeutic target for transplantation and autoimmune diseases.


Subject(s)
Graft vs Host Reaction/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Member 14/antagonists & inhibitors , Signal Transduction/immunology , Adoptive Transfer , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/transplantation , CHO Cells , Cell Movement/genetics , Cell Movement/immunology , Cricetinae , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats , Rats, Inbred Lew , Receptors, Immunologic/physiology , Receptors, Tumor Necrosis Factor, Member 14/administration & dosage , Receptors, Tumor Necrosis Factor, Member 14/genetics , Recombinant Fusion Proteins/administration & dosage , Spleen/cytology , Spleen/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation
19.
J Tissue Eng Regen Med ; 6(8): 655-65, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22162515

ABSTRACT

Mesenchymal stem cells (MSCs) may be among the first stem cell types to be utilized in the clinic for cell therapy, because of their ease of isolation and extensive differentiation potential. Using a porcine model, we have established several cell lines from MSCs to facilitate in vitro and in vivo studies of their potential use for cellular therapy. Bone marrow-derived primary MSCs were immortalized using the pRNS-1 plasmid. We obtained four stable immortalized cell lines that exhibited higher proliferative capacities than the parental cells. All four cell lines displayed a common phenotype similar to that of primary mesenchymal cells, characterized by constitutively high expressions of CD90, CD29, CD44, SLA I and CD46, while CD172a, CD106 and CD56 were less expressed. Remarkably, treatment with 5-azacytidine-stimulated porcine MSCs lines to differentiate into cells that were positive for cardiac phenotypic markers, such as α-actin, connexin-43, sarcomeric actin, serca-2 and, to a lesser extent, desmin and troponin-T. These porcine MSC lines will be valuable biological tools for developing strategies for ex vivo expansion and differentiation of MSCs into a specific lineage.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Myocardium/cytology , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Azacitidine/pharmacology , Biomarkers/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Line, Transformed , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Osteocytes/cytology , Osteocytes/drug effects , Osteocytes/metabolism , Phenotype , Plasmids/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sus scrofa
20.
Transplantation ; 92(10): 1085-93, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-21978997

ABSTRACT

BACKGROUND: B- and T-lymphocyte attenuator (BTLA) functions as a coinhibitory/costimulatory molecule that belongs to the immunoglobulin superfamily and exhibits a pattern of expression restricted to the hematopoietic compartment. Engagement of BTLA by its ligand, herpes virus entry mediator (HVEM), delivers negative signals to T cells, whereas engagement of HVEM receptor on T cells by surface BTLA expressed on other immune cells costimulates T activation. Previous work has reported that parental donor BTLA knock-out or HVEM knock-out T cells adoptively transferred into nonirradiated F1 recipient mice survived poorly, and the rejection of host hematopoietic cells was attenuated compared with F1 recipients receiving wild-type T cells. METHODS: Parent into nonirradiated immunocompetent F1 murine model of acute graft versus host reaction, which is induced with the adoptive transfer of splenocytes from donor B6 mice (H-2(b)) into F1 recipients (BALB/c×B6, H-2(d/b)), was used as an experimental approach to test the therapeutic effect of targeting BTLA during the course of an allogeneic immune response. RESULTS: We herein provide evidence that administration of an anti-BTLA monoclonal antibody leads to significant reduction of donor anti-host allogeneic immune response against bone marrow and thymus during the acute phase of graft versus host reaction in a parent into nonirradiated F1 murine model of alloreactivity. Anti-BTLA protection against donor anti-host hematopoietic cell rejection correlated with impaired anti-host cytotoxic T-lymphocyte activity than reduction in T-cell number infiltrating host tissues. CONCLUSIONS: These findings place BTLA receptor as a potential immunoregulatory target for the modulation of cytotoxic T-lymphocyte-mediated alloresponses.


Subject(s)
Cytotoxicity, Immunologic , Graft vs Host Reaction , Receptors, Immunologic/physiology , Adoptive Transfer , Animals , Antibodies, Monoclonal/pharmacology , Graft Rejection/prevention & control , Hematopoietic Stem Cell Transplantation , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Immunologic/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...