Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(1): 101997, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33490905

ABSTRACT

Automated seizure detection in long-term video-EEG recordings is far from being integrated into common clinical practice. Here, we leverage classical and state-of-the-art complexity measures to robustly and automatically detect seizures from scalp recordings. Brain activity is scored through eight features, encompassing traditional time domain and novel measures of recurrence. A binary classification algorithm tailored to treat unbalanced dataset is used to determine whether a time window is ictal or non-ictal from its features. The application of the algorithm on a cohort of ten adult patients with focal refractory epilepsy indicates sensitivity, specificity, and accuracy of 90%, along with a true alarm rate of 95% and less than four false alarms per day. The proposed approach emphasizes ictal patterns against noisy background without the need of data preprocessing. Finally, we benchmark our approach against previous studies on two publicly available datasets, demonstrating the good performance of our algorithm.

2.
Sensors (Basel) ; 20(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785025

ABSTRACT

Motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain activity patterns through electroencephalogram (EEG) signals to forecast user intention while performing movement imagination tasks. As the microscopic details of individuals' brains are directly shaped by their rich experiences, musicians can develop certain neurological characteristics, such as improved brain plasticity, following extensive musical training. Specifically, the advanced bimanual motor coordination that pianists exhibit means that they may interact more effectively with BCI systems than their non-musically trained counterparts; this could lead to personalized BCI strategies according to the users' previously detected skills. This work assessed the performance of pianists as they interacted with an MI-based BCI system and compared it with that of a control group. The Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA) machine learning algorithms were applied to the EEG signals for feature extraction and classification, respectively. The results revealed that the pianists achieved a higher level of BCI control by means of MI during the final trial (74.69%) compared to the control group (63.13%). The outcome indicates that musical training could enhance the performance of individuals using BCI systems.


Subject(s)
Brain-Computer Interfaces , Imagination , Motor Skills , Music , Adult , Algorithms , Brain , Discriminant Analysis , Electroencephalography , Female , Humans , Machine Learning , Male , Movement , Young Adult
3.
Int J Neural Syst ; 23(4): 1350015, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23746288

ABSTRACT

Discriminative features have to be properly extracted and selected from the electroencephalographic (EEG) signals of each specific subject in order to achieve an adaptive brain-computer interface (BCI) system. This work presents an efficient wrapper-based methodology for feature selection and least squares discrimination of high-dimensional EEG data with low computational complexity. Features are computed in different time segments using three widely used methods for motor imagery tasks and, then, they are concatenated or averaged in order to take into account the time course variability of the EEG signals. Once EEG features have been extracted, proposed framework comprises two stages. The first stage entails feature ranking and, in this work, two different procedures have been considered, the least angle regression (LARS) and the Wilcoxon rank sum test, to compare the performance of each one. The second stage selects the most relevant features using an efficient leave-one-out (LOO) estimation based on the Allen's PRESS statistic. Experimental comparisons with the state-of-the-art BCI methods shows that this approach gives better results than current state-of-the-art approaches in terms of recognition rates and computational requirements and, also with respect to the first ranking stage, it is confirmed that the LARS algorithm provides better results than the Wilcoxon rank sum test for these experiments.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Electroencephalography , Imagination/physiology , User-Computer Interface , Algorithms , Automation , Humans , Image Processing, Computer-Assisted , Least-Squares Analysis , Regression Analysis , Time Factors
4.
J Med Syst ; 36 Suppl 1: S51-63, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23117792

ABSTRACT

Extracting knowledge from electroencephalographic (EEG) signals has become an increasingly important research area in biomedical engineering. In addition to its clinical diagnostic purposes, in recent years there have been many efforts to develop brain computer interface (BCI) systems, which allow users to control external devices only by using their brain activity. Once the EEG signals have been acquired, it is necessary to use appropriate feature extraction and classification methods adapted to the user in order to improve the performance of the BCI system and, also, to make its design stage easier. This work introduces a novel fast adaptive BCI system for automatic feature extraction and classification of EEG signals. The proposed system efficiently combines several well-known feature extraction procedures and automatically chooses the most useful features for performing the classification task. Three different feature extraction techniques are applied: power spectral density, Hjorth parameters and autoregressive modelling. The most relevant features for linear discrimination are selected using a fast and robust wrapper methodology. The proposed method is evaluated using EEG signals from nine subjects during motor imagery tasks. Obtained experimental results show its advantages over the state-of-the-art methods, especially in terms of classification accuracy and computational cost.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/classification , Electroencephalography/instrumentation , Algorithms , Biomedical Engineering , Humans , Software Design
SELECTION OF CITATIONS
SEARCH DETAIL
...