Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38056684

ABSTRACT

Microplastics (MP) are vectors for other environmental contaminants, such as metals, being a considerable problem, especially in the aquatic ecosystem. To investigate the combined effects of MP (high density polyethylene) with lead (Pb), we exposed the mangrove fiddler crab Minuca vocator to Pb (50 mg L-1), and MP (25 mg L-1) alone and in mixture, for 5 days. We aimed to determine Pb and MP bioaccumulation, as well as physiological (oxygen consumption and hemolymph osmolality) and biochemical (superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation) traits effects. Co-exposure of MP and Pb significantly increased the bioaccumulation of Pb, but reduced MP tissue accumulation. Regarding the physiological traits, increasing osmolality and oxygen consumption rates compared to the control were observed, particularly in the combined Pb and MP exposure. As to biochemical traits, the combination of Pb and MP induced the most significant responses in the enzymatic profile antioxidant enzyme activity. The catalase (CAT), glutathione peroxidase (GPx), and dismutase superoxide (SOD) decreased compared to individual exposure effects; the combination of MP and Pb had a synergistic effect on promoting lipid peroxidation (LPO). The co-exposure of MP and Pb acted synergistically when compared to the effects of the isolated compounds. Due to the increasing MP contamination in mangroves, more severe physiological and biochemical effects can be expected on mangrove crabs exposed to metal contamination.


Subject(s)
Brachyura , Plastics , Animals , Catalase/metabolism , Microplastics , Lead/toxicity , Oxidative Stress , Ecosystem , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism
2.
Chemosphere ; 320: 138064, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754301

ABSTRACT

Organochlorine pesticides (OCPs) have been intensively used without proper regulation and control in Latin America due to the prevalence of diseases and pests, thus posing potential risks to nontarget organisms. Initiatives for ecosystem preservation, such as to designate protected areas, may not be enough to avoid contamination by OCPs, considering that protected areas tend to be permeable to diffuse sources. Here, we investigate multi-level responses of the oyster Crassostrea virginica to OCPs in Laguna de Términos, a RAMSAR coastal lagoon in the southern Gulf of Mexico. For this aim, OCPs occurrence and concentrations in the water, sediment, and in oysters from 3 settlement banks were assessed. Enzymatic and non-enzymatic biochemical biomarkers were quantified in the oysters' mantle and digestive gland, and the human health risk due to oyster consumption was also evaluated. OCPs in water were below detection limits. Fourteen OCPs were detected in sediments (∑OCPs mean of 49 ngg-1) and 7 in oyster tissues (∑OCPs mean of 121 ngg-1). The occurrence of OCPs was related to the land uses along the watersheds of the rivers that drain into the lagoon. Biochemical responses were correlated with OCPs (∑HCH, ∑DDT, heptachlor and endosulfan) in sediment, and oyster tissues. OCPs in oyster tissues showed a strong association with pro-oxidant forces and oxidative stress responses (Superoxide dismutase, Catalase, Glutathione Peroxidase, and lipid peroxidation), and neurotoxicity (Acetylcholinesterase), suggesting that the current OCPs contamination exerts significant stress. Our study also shows that the consumption of oysters from the lagoon increases the potential human health risk. Considering that Laguna de Términos is a protected Ramsar site, we suggest that environmental protection measures should be increased and that a monitoring program for OCPs exposure is necessary to assess the effects on this ecosystem.


Subject(s)
Crassostrea , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Crassostrea/physiology , Acetylcholinesterase , Mexico , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...