Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006155

ABSTRACT

Lignins released in the black liquors of kraft pulp mills are an underutilised source of aromatics. Due to their phenol oxidase activity, laccases from ligninolytic fungi are suitable biocatalysts to depolymerise kraft lignins, which are characterised by their elevated phenolic content. However, the alkaline conditions necessary to solubilise kraft lignins make it difficult to use fungal laccases whose activity is inherently acidic. We recently developed through enzyme-directed evolution high-redox potential laccases active and stable at pH 10. Here, the ability of these tailor-made alkaliphilic fungal laccases to oxidise, demethylate, and depolymerise eucalyptus kraft lignin at pH 10 is evidenced by the increment in the content of phenolic hydroxyl and carbonyl groups, the methanol released, and the appearance of lower molecular weight moieties after laccase treatment. Nonetheless, in a second assay carried out with higher enzyme and lignin concentrations, these changes were accompanied by a strong increase in the molecular weight and content of ß-O-4 and ß-5 linkages of the main lignin fraction, indicating that repolymerisation of the oxidised products prevails in one-pot reactions. To prevent it, we finally conducted the enzymatic reaction in a bench-scale reactor coupled to a membrane separation system and were able to prove the depolymerisation of kraft lignin by high-redox alkaliphilic laccase.

2.
Biotechnol Biofuels Bioprod ; 15(1): 149, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36581887

ABSTRACT

BACKGROUND: During the kraft process to obtain cellulosic pulp from wood, most of the lignin is removed by high-temperature alkaline cooking, released in the black liquors and usually incinerated for energy. However, kraft lignins are a valuable source of phenolic compounds that can be valorized in new bio-based products. The aim of this work is to develop laccases capable of working under the extreme conditions of high temperature and pH, typical of the industrial conversion of wood into kraft pulp and fibreboard, in order to provide extremophilic biocatalysts for depolymerising kraft lignin, and enzyme-assisted technologies for kraft pulp and fibreboard production. RESULTS: Through systematic enzyme engineering, combining enzyme-directed evolution and rational design, we changed the optimal pH of the laccase for oxidation of lignin phenols from acidic to basic, enhanced the catalytic activity at alkaline pH and increased the thermal tolerance of the enzyme by accumulating up to eight mutations in the protein sequence. The extremophilic laccase variants show maximum activity at 70 °C and oxidize kraft lignin at pH 10. Their integration into industrial-type processes saves energy and chemicals. As a pre-bleaching stage, the enzymes promote kraft pulp bleachability and significantly reduce the need for chlorine dioxide compared to the industrial sequence. Their application in wood chips during fibreboard production, facilitates the defibering stage, with less energy required. CONCLUSIONS: A set of new alkaliphilic and thermophilic fungal laccases has been developed to operate under the extreme conditions of high temperature and pH typical of industrial wood conversion processes. For the first time basidiomycete laccases of high-redox potential show activity on lignin-derived phenols and polymeric lignin at pH 10. Considering the extreme conditions of current industrial processes for kraft pulp and fibreboard production, the new tailor-made laccases constitute a step forward towards turning kraft pulp mills into biorefineries. Their use as biocatalysts in the wood conversion sector is expected to support the development of more environmentally sound and efficient processes, and more sustainable products.

3.
Int J Mol Sci ; 22(3)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503813

ABSTRACT

Laccases secreted by saprotrophic basidiomycete fungi are versatile biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the sole requirement. Saccharomyces cerevisiae is a preferred host for engineering fungal laccases. To assist the difficult secretion of active enzymes by yeast, the native signal peptide is usually replaced by the preproleader of S. cerevisiae alfa mating factor (MFα1). However, in most cases, only basal enzyme levels are obtained. During directed evolution in S. cerevisiae of laccases fused to the α-factor preproleader, we demonstrated that mutations accumulated in the signal peptide notably raised enzyme secretion. Here we describe different protein engineering approaches carried out to enhance the laccase activity detected in the liquid extracts of S. cerevisiae cultures. We demonstrate the improved secretion of native and engineered laccases by using the fittest mutated α-factor preproleader obtained through successive laccase evolution campaigns in our lab. Special attention is also paid to the role of protein N-glycosylation in laccase production and properties, and to the introduction of conserved amino acids through consensus design enabling the expression of certain laccases otherwise not produced by the yeast. Finally, we revise the contribution of mutations accumulated in laccase coding sequence (CDS) during previous directed evolution campaigns that facilitate enzyme production.


Subject(s)
Fungal Proteins/biosynthesis , Laccase/biosynthesis , Protein Engineering , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cloning, Molecular , Consensus Sequence , Evolution, Molecular , Fermentation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Genetic Engineering , Glycosylation , Laccase/chemistry , Laccase/genetics , Models, Molecular , Mutation , Protein Conformation , Protein Engineering/methods , Protein Sorting Signals/genetics , Saccharomyces cerevisiae/genetics , Structure-Activity Relationship
4.
Sci Rep ; 8(1): 15669, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353103

ABSTRACT

The robustness of a high-redox potential laccase has been enhanced by swapping its second cupredoxin domain with that from another fungal laccase, which introduced a pool of neutral mutations in the protein sequence without affecting enzyme functionality. The new laccase showed outstanding stability to temperature, pH (2-9) and to organic solvents, while maintaining the ability to oxidize high-redox potential substrates. By engineering the signal peptide, enzyme secretion levels in Saccharomyces cerevisiae were increased, which allowed to purify the engineered enzyme for further characterization. The purified domain-swap laccase presented higher activity in the presence of ethanol or methanol, superior half-lives at 50-70 °C, improved stability at acidic pH, and similar catalytic efficiency for DMP albeit a lower one for ABTS (due to a shift in optimum pH). A new N-glycosylation site and a putative new surface salt-bridge were evaluated as possible determinants for the improved stability by site-directed mutagenesis. Although neither seemed to be strictly responsible for the improved thermostability, the new salt bridge was found to notably contribute to the high stability of the swapped enzyme in a broad pH range. Finally, the application potential of the new laccase was demonstrated with the enzymatic treatment of kraft lignin, an industrially relevant lignin stream, at high temperature, neutral pH and short incubation times.


Subject(s)
Azurin/chemistry , Basidiomycota/chemistry , Fungal Proteins/chemistry , Laccase/chemistry , Protein Engineering/methods , Saccharomyces/chemistry , Basidiomycota/genetics , Basidiomycota/metabolism , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Laccase/genetics , Laccase/metabolism , Lignin/metabolism , Models, Molecular , Mutagenesis, Site-Directed/methods , Oxidation-Reduction , Protein Domains , Saccharomyces/genetics , Saccharomyces/metabolism , Substrate Specificity , Temperature
5.
Int J Mol Sci ; 18(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820431

ABSTRACT

Lignin valorization is a pending issue for the integrated conversion of lignocellulose in consumer goods. Lignosulfonates (LS) are the main technical lignins commercialized today. However, their molecular weight should be enlarged to meet application requirements as additives or dispersing agents. Oxidation of lignosulfonates with fungal oxidoreductases, such as laccases, can increase the molecular weight of lignosulfonates by the cross-linking of lignin phenols. To advance in this direction, we describe here the development of a high-throughput screening (HTS) assay for the directed evolution of laccases, with lignosulfonate as substrate and the Folin-Ciocalteau reagent (FCR), to detect the decrease in phenolic content produced upon polymerization of lignosulfonate by the enzyme. Once the reaction conditions were adjusted to the 96-well-plate format, the enzyme for validating the assay was selected from a battery of high-redox-potential laccase variants functionally expressed in S. cerevisiae (the preferred host for the directed evolution of fungal oxidoreductases). The colorimetric response (absorbance at 760 nm) correlated with laccase activity secreted by the yeast. The HTS assay was reproducible (coefficient of variation (CV) = 15%) and sensitive enough to detect subtle differences in activity among yeast clones expressing a laccase mutant library obtained by error-prone PCR (epPCR). The method is therefore feasible for screening thousands of clones during the precise engineering of laccases toward valorization of lignosulfonates.


Subject(s)
High-Throughput Screening Assays/methods , Laccase/metabolism , Lignin/analogs & derivatives , Lignin/metabolism , Phenols/metabolism , Genetic Engineering/methods , Laccase/genetics , Molybdenum/metabolism , Oxidation-Reduction , Polymerization , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tungsten Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...