Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 16(12): 100675, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36442325

ABSTRACT

Second litter syndrome (SLS) consists of a loss of prolificacy in the second parity (P2), when a sow presents the same or lower results for litter size than in the first parity (P1). This syndrome has been reported for modern prolific breeds but has not been studied for rustic breeds. The objectives of this study are to determine how and to what degree Iberian sows (a low productivity breed recently raised on intensive farms) are affected by SLS; to establish a target and reference levels; and to assess the factors influencing the performance. Analysed data correspond to 66 Spanish farms with a total of 126 140 Iberian sows. The average Iberian sow prolificacy in P1 was 8.91 total born (TB) and 8.47 born alive (BA) piglets, whereas in P2, it decreased by -0.05 TB and -0.01 BA piglets, suggesting some general incidence of SLS. At the sow level, 56.63% did not improve prolificacy in terms of BA piglets in P2, and 16.98% had a clear decrease in prolificacy, losing ≥3 BA piglets in P2. Within herds, a mean of 57.75% of sows showed SLS, with an evident decrease in the number of BA piglets in P2. The plausible target for the Iberian farm's prolificacy comes from the quartile of farms with the lowest percentage of SLS sows within the farms with the highest prolificacy between P1 and P2 (mean of 8.77 BA). So, in this subset of farms (N = 17), 47.3% of sows improved their prolificacy in P2 (i.e. did not show SLS). Hence, half the sows could be expected to show SLS even on farms with a good performance. Finally, this study brings out the main factors reducing P2 prolificacy through SLS in the Iberian breed: later age at first farrowing, long first lactation length, medium weaning to conception interval and large litter size in P1. In conclusion, improving the reproductive performance of Iberian farms requires reducing the percentage of sows with SLS, paying special attention to those risk factors. The knowledge derived from this study can provide references for comparing and establishing objectives of performance on Iberian sow farms which can be used for other robust breeds.


Subject(s)
Lactation , Reproduction , Pregnancy , Swine/genetics , Animals , Female , Parity , Litter Size , Weaning
2.
Crit Rev Anal Chem ; 52(5): 917-932, 2022.
Article in English | MEDLINE | ID: mdl-33180561

ABSTRACT

Volatilome analysis is growing in attention for the diagnosis of diseases in animals and humans. In particular, volatilome analysis in fecal samples is starting to be proposed as a fast, easy and noninvasive method for disease diagnosis. Volatilome comprises volatile organic compounds (VOCs), which are produced during both physiological and patho-physiological processes. Thus, VOCs from a pathological condition often differ from those of a healthy state and therefore the VOCs profile can be used in the detection of some diseases. Due to their strengths and advantages, feces are currently being used to obtain information related to health status in animals. However, they are complex samples, that can present problems for some analytical techniques and require special consideration in their use and preparation before analysis. This situation demands an effort to clarify which analytic options are currently being used in the research context to analyze the possibilities these offer, with the final objectives of contributing to develop a standardized methodology and to exploit feces potential as a diagnostic matrix. The current work reviews the studies focused on the diagnosis of animal diseases through fecal volatilome in order to evaluate the analytical methods used and their advantages and limitations. The alternatives found in the literature for sampling, storage, sample pretreatment, measurement and data treatment have been summarized, considering all the steps involved in the analytical process.


Subject(s)
Volatile Organic Compounds , Animals , Feces/chemistry , Humans , Volatile Organic Compounds/analysis
3.
J Dairy Sci ; 96(9): 5426-34, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23849634

ABSTRACT

Organic producers, traders, and consumers must address 2 issues related to milk: authentication of the production system and nutritional differentiation. The presence of hippuric acid (HA) in goat milk samples has been proposed as a possible marker to differentiate the feeding regimen of goats. The objective of this work is to check the hypothesis that HA could be a marker for the type of feeding regimen of goats by studying the influence of production system (conventional or organic) and feeding regimen (with or without grazing fodder). With this purpose, commercial cow and goat milk samples (n=27) and raw goat milk samples (n=185; collected from different breeds, localizations, and dates) were analyzed. Samples were grouped according to breed, feeding regimen, production system, and origin to compare HA content by ANOVA and honestly significant difference Tukey test at a confidence level of ≥95%. Hippuric acid content was obtained by analyzing milk samples with capillary electrophoresis. This method was validated by analyzing part of the samples with HPLC as a reference technique. Sixty-nine raw goat milk samples (of the total 158 samples analyzed in this work) were quantified by capillary electrophoresis. In these samples, the lowest average content for HA was 7±3 mg/L. This value corresponds to a group of conventional raw milk samples from goats fed with compound feed. The highest value of this group was 28±10 mg/L, corresponding to goats fed compound feed plus grass. Conversely, for organic raw goat milk samples, the highest concentration was 67±14 mg/L, which corresponds to goats fed grass. By contrast, the lowest value of this organic group was 26±10 mg/L, which belongs to goats fed organic compounds. Notice that the highest HA average content was found in samples from grazing animals corresponding to the organic group. This result suggests that HA is a good marker to determine the type of goats feeding regimen; a high content of HA represents a diet based mainly or exclusively on eating green grass (grazing), independently of the production system. Hence, this marker would not be useful for the actual organic policies to distinguish organic milk under the current regulations, because organic dairy ruminants can be fed organic compound feed and conserved fodder without grazing at all.


Subject(s)
Hippurates/analysis , Milk/chemistry , Animal Feed , Animals , Biomarkers/analysis , Cattle , Diet/veterinary , Electrophoresis, Capillary/veterinary , Goats , Organic Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...