Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Agric Food Chem ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857423

ABSTRACT

Taste receptors are found in the gastrointestinal tract, where they are susceptible to dietary modulation, a key point that is crucial for diet-related responses. Insects are sustainable and good-quality protein sources. This study analyzed the impact of insect consumption on the modulation of taste receptor expression across various segments of the rat intestine under healthy or inflammatory conditions. Female Wistar rats were supplemented with Tenebrio molitor (T) or Alphitobius diaperinus (B), alongside a control group (C), over 21 days under healthy or LPS-induced inflammation. The present study reveals, for the first time, that insect consumption modulates taste receptor gene expression, mainly in the ascending colon. This modulation was not found under inflammation. Integrative analysis revealed colonic Tas1r1 as a key discriminator for insect consumption (C = 1.04 ± 0.32, T = 1.78 ± 0.72, B = 1.99 ± 0.82, p-value <0.05 and 0.01, respectively). Additionally, correlation analysis showed the interplay between intestinal taste receptors and metabolic and inflammatory responses. These findings underscore how insect consumption modulates taste receptors, influencing intestinal function and broader physiological mechanisms.

2.
Food Funct ; 15(8): 4552-4563, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38584501

ABSTRACT

The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.


Subject(s)
Edible Insects , Insect Proteins , Rats, Wistar , Tenebrio , Animals , Rats , Humans , Male , Intestines/drug effects , Intestines/immunology , Intestinal Diseases , Disease Models, Animal , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
3.
Front Nutr ; 10: 1215889, 2023.
Article in English | MEDLINE | ID: mdl-37712001

ABSTRACT

For decades bitter taste receptors (TAS2R) were thought to be located only in the mouth and to serve as sensors for nutrients and harmful substances. However, in recent years Tas2r have also been reported in extraoral tissues such as the skin, the lungs, and the intestine, where their function is still uncertain. To better understand the physiological role of these receptors, in this paper we focused on the intestine, an organ in which their activation may be similar to the receptors found in the mouth. We compare the relative presence of these receptors along the gastrointestinal tract in three main species of biomedical research (mice, rats and humans) using sequence homology. Current data from studies of rodents are scarce and while more data are available in humans, they are still deficient. Our results indicate, unexpectedly, that the reported expression profiles do not always coincide between species even if the receptors are orthologs. This may be due not only to evolutionary divergence of the species but also to their adaptation to different dietary patterns. Further studies are needed in order to develop an integrated vision of these receptors and their physiological functionality along the gastrointestinal tract.

4.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175514

ABSTRACT

The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Rats , Female , Animals , Grape Seed Extract/pharmacology , Proanthocyanidins/pharmacology , Glucagon-Like Peptide 1/metabolism , Cholecystokinin , Fatty Acids, Volatile/metabolism , Colon/metabolism
5.
J Sci Food Agric ; 103(4): 1660-1667, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36324158

ABSTRACT

BACKGROUND: It has been previously shown that acutely administered insect Alphitobius diaperinus protein increases food intake in rats and modifies the ex vivo enterohormone secretory profile differently than beef or almond proteins. In this study, we aimed to evaluate whether these effects could be maintained for a longer period and determine the underlying mechanisms. RESULTS: We administered two different insect species to rats for 26 days and measured food intake at different time points. Both insect species increased food intake in the first week, but the effect was later lost. Glucagon-like peptide 1 (GLP-1) and ghrelin were measured in plasma and ex vivo, and no chronic effects on their secretion or desensitization were found. Nevertheless, digested A. diaperinus acutely modified GLP-1 and ghrelin secretion ex vivo. CONCLUSION: Our results suggest that increases in food intake could be explained by a local ghrelin reduction acting in the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Coleoptera , Tenebrio , Cattle , Rats , Female , Animals , Tenebrio/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Insecta , Eating , Meals
6.
Food Funct ; 13(20): 10491-10500, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36148543

ABSTRACT

Grape seed derived procyanidins (GSPE) have been shown to effectively prevent intestinal disarrangements induced by a cafeteria diet in young rats. However, little is known about the effects of procyanidins and cafeteria diet on enterohormone secretion in aged rats, as the ageing processes modify these effects. To study these effects in aged rats, we subjected 21-month-old and young 2-month-old female rats to two sub-chronic preventive GSPE treatments. After three months of cafeteria diet administration, we analysed the basal and stimulated secretion and mRNA expression of CCK, PYY and GLP-1, caecal SCFA and intestinal sizes. We found that the effects of a cafeteria diet on the basal duodenal CCK secretion are age dependent. GLP-1 in the ileum was not modified regardless of the rat's age, and GSPE preventive effects differed in the two age groups. GSPE pre-treatment reduced GLP-1, PYY and ChgA in mRNA in aged ileum tissue, while the cafeteria diet increased these in aged colon. The GSPE treatments only modified low-abundance SCFAs. The cafeteria diet in aged rats increases the caecum size differently from that in young rats and GSPE pre-treatment prevents this increase. Therefore, ageing modifies nutrient sensing, and the cafeteria diet acts mainly on the duodenum and colon, while procyanidins have a larger effect on the ileum.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Animals , Diet , Female , Glucagon-Like Peptide 1/metabolism , Grape Seed Extract/pharmacology , Proanthocyanidins/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Wistar
7.
Nutrients ; 14(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406076

ABSTRACT

Protein is considered the most satiating macronutrient, and its effect on satiety and food intake is source-dependent. For the first time, we compared the effect of the administration of an insect or almond preload, both containing 20 g of protein, on appetite and food intake in human subjects. Participants consumed both foods and a vehicle as a liquid preload on three separate days. They were then offered a breakfast and lunch buffet meal at which food intake was measured. Visual analogue scale (VAS) questionnaires were completed following the three preloads to assess appetite and other sensations. At breakfast, reduced energy intake was observed for both preloads compared with vehicle. At lunch, food intake only differed in the insect group, which consumed more than the vehicle. Insect preload increased the total amount of protein ingested with a slight increase in total energy consumed, differently than almond, which significantly increased total protein and energy consumed. There was no correlation between indigestion-sensation ratings and food intake. Moreover, the insect preload resulted in lower sleepiness and tiredness ratings compared with the almond preload. Thus, insect-derived protein may be suitable as a safe ingredient for snacks intended for elderly or infirm patients who require increased protein intake.


Subject(s)
Prunus dulcis , Aged , Animals , Appetite , Cross-Over Studies , Eating , Energy Intake , Humans , Insecta , Satiation , Snacks , Young Adult
8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408884

ABSTRACT

GLP1 produced in the upper part of the gut is released after food intake and acts by activating insulin secretion, but the role of GLP1 in the colon, where it is predominantly produced, remains unknown. Here we characterized the apical versus basolateral secretion of GLP1 and PYY and the paracrine mechanisms of action of these enterohormones in the human colon. We stimulated human colon tissue in different ex vivo models with meat peptone and we used immunofluorescence to study the presence of canonical and non-canonical receptors of GLP1. We found that PYY and GLP1 are secreted mainly at the gut lumen in unstimulated and stimulated conditions. We detected DPP4 activity and found that GLP1R and GCGR are widely expressed in the human colon epithelium. Unlike GLP1R, GCGR is not expressed in the lamina propria, but it is located in the crypts of Lieberkühn. We detected GLP1R expression in human colon cell culture models. We show that the apical secretion of PYY and GLP1 occurs in humans, and we provide evidence that GLP1 has a potential direct paracrine function through the expression of its receptors in the colon epithelium, opening new therapeutic perspectives in the use of enterohormones analogues in metabolic pathologies.


Subject(s)
Colon , Glucagon-Like Peptide-1 Receptor , Colon/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Insulin Secretion , Intestinal Mucosa/metabolism
9.
Front Endocrinol (Lausanne) ; 13: 854718, 2022.
Article in English | MEDLINE | ID: mdl-35345470

ABSTRACT

Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.


Subject(s)
Taste Buds , Taste , Animals , Gastrointestinal Tract , Receptors, G-Protein-Coupled/genetics , Taste/physiology
10.
FASEB J ; 36(3): e22175, 2022 03.
Article in English | MEDLINE | ID: mdl-35107858

ABSTRACT

Bitterness is perceived in humans by 25 subtypes of bitter taste receptors (hTAS2R) that range from broadly tuned to more narrowly tuned receptors. hTAS2R5 is one of the most narrowly tuned bitter taste receptors in humans. In this study, we review the literature on this receptor and show there is no consensus about its role. We then compare the possible role of hTAS2R5 with that of the proteins of the TAS2R family in rat, mouse, and pig. A phylogenetic tree of all mammalian TAS2R domain-containing proteins showed that human hTAS2R5 has no ortholog in pig, mouse, or rat genomes. By comparing the agonists that are common to hTAS2R5 and other members of the family, we observed that hTAS2R39 is the receptor that shares most agonists with hTAS2R5. In mouse, some of these agonists activate mTas2r105 and mTas2r144, which are distant paralogs of hTAS2R5. mTas2r144 seems to be the receptor that is most similar to hTAS2R5 because they are both activated by the same agonists and have affinities in the same range of values. Then, we can conclude that hTAS2R5 has a unique functional specificity in humans as it is activated by selective agonists and that its closest functional homolog in mouse is the phylogenetically distant mTas2r144.


Subject(s)
Receptors, G-Protein-Coupled/genetics , Taste/genetics , Animals , Genomics/methods , Humans , Phylogeny , Taste/physiology , Taste Buds/metabolism
11.
Nutr Neurosci ; 25(12): 2627-2637, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34789070

ABSTRACT

Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES: This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS: GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS: Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION: We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.


Subject(s)
Proanthocyanidins , Rats , Animals , Proanthocyanidins/pharmacology , Antioxidants/pharmacology , Rats, Wistar , Diet , Polyphenols/pharmacology , Hippocampus , Mitochondria
12.
Nutrients ; 13(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208508

ABSTRACT

Obesity and ageing are current issues of global concern. Adaptive homeostasis is compromised in the elderly, who are more likely to suffer age-related health issues, such as obesity, metabolic syndrome, and cardiovascular disease. The current worldwide prevalence of obesity and higher life expectancy call for new strategies for treating metabolic disorders. Grape-seed proanthocyanidin extract (GSPE) is reported to be effective in ameliorating these pathologies, especially in young animal models. In this study, we aimed to test the effectiveness of GSPE in modulating obesity-related pathologies in aged rats fed an obesogenic diet. To do so, 21-month-old rats were fed a high-fat/high-sucrose diet (cafeteria diet) for 11 weeks. Two time points for GSPE administration (500 mg/kg body weight), i.e., a 10-day preventive GSPE treatment prior to cafeteria diet intervention and a simultaneous GSPE treatment with the cafeteria diet, were assayed. Body weight, metabolic parameters, liver steatosis, and systemic inflammation were analysed. GSPE administered simultaneously with the cafeteria diet was effective in reducing body weight, total adiposity, and liver steatosis. However, the preventive treatment was effective in reducing only mesenteric adiposity in these obese, aged rats. Our results confirm that the simultaneous administration of GSPE improves metabolic disruptions caused by the cafeteria diet also in aged rats.


Subject(s)
Grape Seed Extract/therapeutic use , Obesity/drug therapy , Proanthocyanidins/therapeutic use , Adiposity/drug effects , Animals , Blood Glucose/drug effects , Disease Models, Animal , Fatty Liver/drug therapy , Female , Glucagon/blood , Insulin/blood , Obesity/metabolism , Rats , Rats, Wistar , Weight Loss/drug effects
13.
Nutr Res Rev ; 34(2): 259-275, 2021 12.
Article in English | MEDLINE | ID: mdl-33461642

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In the present review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on dipeptidyl peptidase-4 (DPP4), the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.


Subject(s)
Dietary Proteins/administration & dosage , Glucagon-Like Peptide 1 , Protein Hydrolysates , Homeostasis , Humans , Protein Hydrolysates/administration & dosage
14.
Nutrients ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260866

ABSTRACT

Adaptive homeostasis declines with age and this leads to, among other things, the appearance of chronic age-related pathologies such as cancer, neurodegeneration, osteoporosis, sarcopenia, cardiovascular disease and diabetes. Grape seed-derived procyanidins (GSPE) have been shown to be effective against several of these pathologies, mainly in young animal models. Here we test their effectiveness in aged animals: 21-month-old female rats were treated with 500 mg GSPE/kg of body weight for ten days. Afterwards they were kept on a chow diet for eleven weeks. Food intake, body weight, metabolic plasma parameters and tumor incidence were measured. The GSPE administered to aged rats had an effect on food intake during the treatment and after eleven weeks continued to have an effect on visceral adiposity. It prevented pancreas dysfunction induced by ageing and maintained a higher glucagon/insulin ratio together with a lower decrease in ketonemia. It was very effective in preventing age-related tumor development. All in all, this study supports the positive effect of GSPE on preventing some age-related pathologies.


Subject(s)
Aging/drug effects , Grape Seed Extract/pharmacology , Proanthocyanidins/pharmacology , Animals , Body Composition , Body Weight , Drug Administration Schedule , Female , Grape Seed Extract/administration & dosage , Proanthocyanidins/administration & dosage , Rats , Rats, Wistar , Time Factors
15.
Nutrients ; 12(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321802

ABSTRACT

Metabolic surgery modulates the enterohormone profile, which leads, among other effects, to changes in food intake. Bitter taste receptors (TAS2Rs) have been identified in the gastrointestinal tract and specific stimulation of these has been linked to the control of ghrelin secretion. We hypothesize that optimal stimulation of TAS2Rs could help to modulate enteroendocrine secretions and thus regulate food intake. To determine this, we have assayed the response to specific agonists for hTAS2R5, hTAS2R14 and hTAS2R39 on enteroendocrine secretions from intestinal segments and food intake in rats. We found that hTAS2R5 agonists stimulate glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), and reduce food intake. hTAS2R14 agonists induce GLP1, while hTASR39 agonists tend to increase peptide YY (PYY) but fail to reduce food intake. The effect of simultaneously activating several receptors is heterogeneous depending on the relative affinity of the agonists for each receptor. Although detailed mechanisms are not clear, bitter compounds can stimulate differentially enteroendocrine secretions that modulate food intake in rats.


Subject(s)
Eating/drug effects , Gastrointestinal Hormones/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , Bodily Secretions/drug effects , Cholecystokinin/metabolism , Gastrointestinal Tract/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Peptide YY/metabolism , Rats , Taste/physiology
16.
Nutrients ; 12(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784756

ABSTRACT

In this study we compare the interaction of three protein sources-insect, beef, and almond-with the gastrointestinal tract. We measured the enterohormone secretion ex vivo in human and pig intestine treated with in vitro digestions of these foods. Insect and beef were the most effective in inducing the secretion of CCK, while almond was the most effective in inducing PYY in pig duodenum. In the human colon, almond was also the most effective in inducing PYY, and GLP-1 levels were increased by insect and beef. The three digested proteins reduced ghrelin secretion in pig duodenum, while only insect reduced ghrelin secretion in human colon. We also found that food intake in rats increased in groups fed a raw insect pre-load and decreased when fed raw almond. In conclusion, the insect Alphitobius diaperinus modulates duodenal and colonic enterohormone release and increases food intake in rats. These effects differ from beef and almond.


Subject(s)
Coleoptera/chemistry , Dietary Proteins/pharmacology , Digestion/drug effects , Eating/drug effects , Intestinal Mucosa/metabolism , Animals , Gastrointestinal Tract/metabolism , Prunus dulcis/chemistry , Rats , Red Meat/analysis
17.
Food Chem Toxicol ; 144: 111606, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32738368

ABSTRACT

Polyphenols from Hibiscus sabdariffa (HS) alleviate obesity-related metabolic complications but the metabolites responsible for such effects are unknown. We aimed to elucidate which of the potential plasma metabolites from a polyphenol-enriched HS (PEHS) extract contributed for the reversion of glucolipotoxicity-induced metabolic stress using 3T3-L1 adipocyte and INS 832/13 pancreatic ß-cell models under glucolipotoxic conditions. PEHS extract, quercetin (Q) and quercetin-3-O-glucuronide (Q3GA) showed stronger capacity to decrease glucolipotoxicity-induced ROS generation than ascorbic acid or chlorogenic acid. PEHS extract, Q and Q3GA decreased secretion of cytokines (leptin, TNF-α, IGF-1, IL-6, VEGF, IL-1α, IL-1ß and CCL2) and reduced CCL2 expression at transcriptional level. In addition, PEHS extract, Q and Q3GA reduced triglyceride accumulation, which occurred through fatty acid synthase (FASN) downregulation, AMPK activation and mitochondrial mass and biogenesis restoration via PPARα upregulation. Electron microscopy confirmed that PEHS extract and Q3GA decreased mitochondrial remodeling and mitophagy. Virtual screening leads us to postulate that Q and Q3GA might act as agonists of these protein targets at specific sites. These data suggest that Q and Q3GA may be the main responsible compounds for the capacity of PEHS extract to revert glucolipotoxicity-induced metabolic stress through AMPK-mediated decrease in fat storage and increase in fatty acid oxidation, though other compounds of the extract may contribute to this capacity.


Subject(s)
Glucose/toxicity , Hibiscus/metabolism , Plant Extracts/pharmacology , Quercetin/metabolism , Stress, Physiological/drug effects , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipokines/metabolism , Animals , Chemokine CCL2/metabolism , Hibiscus/chemistry , In Vitro Techniques , Lipid Metabolism/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Rats
18.
Nutrients ; 12(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906505

ABSTRACT

The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.


Subject(s)
Inflammatory Bowel Diseases/diet therapy , Proanthocyanidins/pharmacology , Animals , Humans , Inflammation/drug therapy , Inflammatory Bowel Diseases/etiology , Obesity/complications , Phytochemicals
19.
Sci Rep ; 9(1): 15722, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673011

ABSTRACT

A relationship between polymorphisms in genes encoding interleukin 7 (IL-7) and its cellular receptor (IL-7R) and antiretroviral therapy (ART)-associated immune recovery in HIV subjects has been previously reported. However, details of this relationship remain unclear, and the association of these polymorphisms with circulating IL-7/IL-7R levels is scarce. Here, we explored whether IL-7/IL-7R axis was associated with quantitative CD4+ T-cell recovery in HIV-infected subjects. IL-7/IL-7R polymorphisms were assessed by genotyping, and multiple inheritance models were used to estimate both, their association with low pre-ART CD4+ T-cell counts and incomplete immune recovery status after 48 weeks of suppressive ART. Integrated data from genetic variants association and soluble plasma IL-7/IL-7R quantification suggest that IL-7/IL-7R genotype expression could alter the homeostatic balance between soluble and membrane-bound receptors. The haplotype analyses indicates that allele combinations impacts pre-ART circulating CD4+ T-cell counts, immune recovery status and the absolute increment of CD4+ T-cell counts. The knowledge about how IL-7/IL-7R axis is related to quantitative CD4+ T-cell recovery and immune recovery status after initiating ART could be useful regarding T-cell reservoirs investigations in HIV subjects.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/immunology , Interleukin-7/genetics , Receptors, Interleukin-7/genetics , Adult , CD4 Lymphocyte Count , Cohort Studies , Female , HIV Infections/drug therapy , Homeostasis , Humans , Interleukin-7/blood , Male , Middle Aged , Receptors, Interleukin-7/blood
20.
J Transl Med ; 17(1): 307, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31500625

ABSTRACT

BACKGROUND: Conventional clinical biomarkers cannot accurately differentiate indolent from aggressive prostate cancer (PCa). We investigated the usefulness of a biomarker panel measured exclusively in biofluids for assessment of PCa aggressiveness. METHODS: We collected biofluid samples (plasma/serum/semen/post-prostatic massage urine) from 98 patients that had undergone radical prostatectomy. Clinical biochemistry was performed and several cytokines/chemokines including soluble(s) TWEAK, sFn14, sCD163, sCXCL5 and sCCL7 were quantified by ELISA in selected biofluids. Also, the expression of KLK2, KLK3, Fn14, CD163, CXCR2 and CCR3 was quantified by real-time PCR in semen cell sediment. Univariate, logistic regression, and receiver operating characteristic (ROC) analyses were used to assess the predictive ability of the selected biomarker panel in conjunction with clinical and metabolic variables for the evaluation of PCa aggressiveness. RESULTS: Total serum levels of prostate-specific antigen (PSA), semen levels of sTWEAK, fasting glycemia and mRNA levels of Fn14, KLK2, CXCR2 and CCR3 in semen cell sediment constituted a panel of markers that was significantly different between patients with less aggressive tumors [International Society of Urological Pathology (ISUP) grade I and II] and those with more aggressive tumors (ISUP grade III, IV and V). ROC curve analysis showed that this panel could be used to correctly classify tumor aggressiveness in 90.9% of patients. Area under the curve (AUC) analysis revealed that this combination was more accurate [AUC = 0.913 95% confidence interval (CI) 0.782-1] than a classical non-invasive selected clinical panel comprising age, tumor clinical stage (T-classification) and total serum PSA (AUC = 0.721 95% CI 0.613-0.830). CONCLUSIONS: TWEAK/Fn14 axis in combination with a selected non-invasive biomarker panel, including conventional clinical biochemistry, can improve the predictive power of serum PSA levels and could be used to classify PCa aggressiveness.


Subject(s)
Biomarkers, Tumor/metabolism , Body Fluids/metabolism , Cytokine TWEAK/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , TWEAK Receptor/metabolism , Cohort Studies , Humans , Male , Middle Aged , Neoplasm Invasiveness , ROC Curve , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...