Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9984, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693352

ABSTRACT

The aim of this work is to quantitatively assess the wavefront phase of keratoconic eyes measured by the ocular aberrometer t·eyede (based on WaveFront Phase Imaging Sensor), characterized by a lateral resolution of 8.6 µm without requiring any optical element to sample the wavefront information. We evaluated the parameters: root mean square error, Peak-to-Valley, and amplitude of the predominant frequency (Fourier Transform analysis) of a section of the High-Pass filter map in keratoconic and healthy cohorts. Furthermore, we have analyzed keratoconic eyes that presented dark-light bands in this map to assess their period and orientation with the Fourier Transform. There are significant statistical differences (p value < 0.001) between healthy and keratoconic eyes in the three parameters, demonstrating a tendency to increase with the severity of the disease. Otherwise, the quantification of the bands reveals that the width is independent of eye laterality and keratoconic stage as orientation, which tends to be oblique. In conclusion, the quantitative results obtained with t·eyede could help to diagnose and monitor the progression of keratoconus.


Subject(s)
Keratoconus , Keratoconus/diagnostic imaging , Keratoconus/diagnosis , Humans , Adult , Female , Male , Corneal Topography/methods , Young Adult , Aberrometry/methods , Cornea/diagnostic imaging , Cornea/pathology , Fourier Analysis
2.
Eur J Hum Genet ; 26(3): 396-406, 2018 03.
Article in English | MEDLINE | ID: mdl-29367704

ABSTRACT

Celia's encephalopathy (progressive encephalopathy with/without lipodystrophy, PELD) is a recessive neurodegenerative disease that is fatal in childhood. It is caused by a c.985C>T variant in the BSCL2/seipin gene that results in an aberrant seipin protein. We evaluated neurological development before and during treatment with human recombinant leptin (metreleptin) plus a dietary intervention rich in polyunsaturated fatty acids (PUFA) in the only living patient. A 7 years and 10 months old girl affected by PELD was treated at age 3 years with metreleptin, adding at age 6 omega-3 fatty acid supplementation. Her mental age was evaluated using the Battelle Developmental Inventory Screening Test (BDI), and brain PET/MRI was performed before treatment and at age 5, 6.5, and 7.5 years. At age 7.5 years, the girl remains alive and leads a normal life for her mental age of 30 months, which increased by 4 months over the last 18 months according to BDI. PET images showed improved glucose uptake in the thalami, cerebellum, and brainstem. This patient showed a clear slowdown in neurological regression during leptin replacement plus a high PUFA diet. The aberrant BSCL2 transcript was overexpressed in SH-SY5Y cells and was treated with docosahexaenoic acid (200 µM) plus leptin (0.001 mg/ml) for 24 h. The relative expression of aberrant BSCL2 transcript was measured by qPCR. In vitro studies showed significant reduction (32%) in aberrant transcript expression. This therapeutic approach should be further studied in this devastating disease.


Subject(s)
Brain Diseases/drug therapy , Fatty Acids, Unsaturated/therapeutic use , Leptin/analogs & derivatives , Lipodystrophy/drug therapy , Brain Diseases/diet therapy , Brain Diseases/genetics , Cell Line, Tumor , Child , Diet , Fatty Acids, Unsaturated/administration & dosage , Female , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Humans , Leptin/administration & dosage , Leptin/therapeutic use , Lipodystrophy/diet therapy , Lipodystrophy/genetics , Syndrome
3.
Clin Endocrinol (Oxf) ; 88(1): 44-50, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29078011

ABSTRACT

OBJECTIVE: Type 1 and type 2 familial partial lipodystrophies (FPLD) are characterized by the loss or increase in subcutaneous fat in certain body regions, as well as metabolic disorders. Higher muscle volume and mass have also been described. However, so far, possible bone involvement has not been studied. The aim of this study was to evaluate bone mineral density (BMD) in patients with type 1 and type 2 FPLD. METHODS: A total of 143 women were selected and distributed into three groups (17 women with FPLD2, 82 women with FPLD1 and 44 nonlipodystrophic obese female controls). A thorough history and physical examination were carried out on all subjects, as well as the measurement of anthropometric features. BMD along with fat and fat-free mass (FFM) were determined by DXA (dual-energy X-ray absorptiometry). Statistical analyses, primarily using the χ2 , ANOVA and ANCOVA tests, were performed, using age, height, fat and FFM as covariables. RESULTS: After eliminating the possible influences of age, height, fat and FFM, we observed that there were no significant differences in total BMD between patients with FPLD and the control group, showing total BMD values of 1.092 ± 0.037 g/cm2 in the FPLD2 group, 1.158 ± 0.013 g/cm2 in the FPLD1 group and 1.173 ± 0.018 g/cm2 in the control group (P = .194). Similarly, no significant differences were found in segmental BMD. CONCLUSIONS: Unlike in other types of laminopathy in which bone is affected, in the case of FPLD, there are no differences in BMD compared to nonlipodystrophic subjects.


Subject(s)
Bone Density , Lipodystrophy, Familial Partial/physiopathology , Adult , Anthropometry , Case-Control Studies , Female , Humans , Middle Aged , Obesity
4.
PLoS One ; 11(7): e0158874, 2016.
Article in English | MEDLINE | ID: mdl-27391332

ABSTRACT

OBJECTIVE: PELD (Progressive Encephalopathy with or without Lipodystrophy or Celia's Encephalopathy) is a fatal and rare neurodegenerative syndrome associated with the BSCL2 mutation c.985C>T, that results in an aberrant transcript without the exon 7 (Celia seipin). The aim of this study was to evaluate both the process of cellular senescence and the effect of unsaturated fatty acids on preadipocytes from a homozygous c.985C>T patient. Also, the role of aberrant seipin isoform on adipogenesis was studied in adipose-derived human mesenchymal stem cells. MATERIAL AND METHODS: Cellular senescence was evaluated using ß-galactosidase staining of preadipocytes obtained from a homozygous c.985C>T patient. Moreover, these cells were cultured during 24 hours with Intralipid, a soybean oil-based commercial lipid emulsion. The expression of the different BSCL2 transcripts was measured by qPCR. Adipose-derived human mesenchymal stem cells were differentiated to a fat lineage using StemPRO adipogenesis kit, and the expression of BSCL2 transcripts and several adipogenesis-related genes was measured by qPCR. RESULTS: the treatment of preadipocytes with unsaturated fatty acids significantly reduced the expression of the BSCL2 transcript without exon 7 by 34 to 63%. On the other hand, at least in preadipocytes, this mutation does not disturb cellular senescence rate. Finally, during adipocyte differentiation of adipose-derived human mesenchymal stem cells, the expression of adipogenic genes (PPARG, LPIN1, and LPL) increased significantly over 14 days, and noteworthy is that the BSCL2 transcript without exon 7 was differentially expressed by 332 to 723% when compared to day 0, suggesting an underlying role in adipogenesis. CONCLUSIONS: our results suggest that Celia seipin is probably playing an underestimated role in adipocyte maturation, but not in senescence, and its expression can be modified by exogenous factors as fatty acids.


Subject(s)
Adipocytes , Fatty Acids, Unsaturated/pharmacology , GTP-Binding Protein gamma Subunits , Heredodegenerative Disorders, Nervous System , Lipodystrophy , Mesenchymal Stem Cells , Point Mutation , Adipocytes/metabolism , Adipocytes/pathology , Cellular Senescence/drug effects , Cellular Senescence/genetics , Female , GTP-Binding Protein gamma Subunits/biosynthesis , GTP-Binding Protein gamma Subunits/genetics , Heredodegenerative Disorders, Nervous System/drug therapy , Heredodegenerative Disorders, Nervous System/genetics , Heredodegenerative Disorders, Nervous System/metabolism , Heredodegenerative Disorders, Nervous System/pathology , Humans , Lipodystrophy/drug therapy , Lipodystrophy/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology
5.
Endocrine ; 54(2): 411-421, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27473102

ABSTRACT

Familial partial lipodystrophy are Mendelian disorders involving abnormal body fat distribution and insulin resistance. The current classification includes the Köbberling syndrome (type 1 familial partial lipodystrophy), characterized by fat loss in the lower limbs and abnormal fat accumulation in other areas. Type 1 familial partial lipodystrophy appears to be heritable, but little is known about it, including putative contributing mutations. We aimed to characterize this syndrome better by evaluating a group of women with phenotypic features of type 1 familial partial lipodystrophy. This is a case-controlled study in which 98 women with type 1 familial partial lipodystrophy that lacked classical mutations known to cause familial partial lipodystrophy were compared with 60 women without lipodystrophy and 25 patients with type 2 familial partial lipodystrophy (Dunnigan disease). Clinical course, body composition by dual-energy X-ray absorptiometry, HbA1c, lipid profile, insulin, leptin and family history were evaluated in all of the participants. Analyses of receiver-operating characteristic curve were performed for type 1 familial partial lipodystrophy diagnosis, comparing different truncal/limbs ratios. Among patients with type 1 familial partial lipodystrophy, 68 % developed recognizable lipodystrophy before adolescence, and most displayed an autosomal-dominant pattern (86 %). Women with type 1 familial partial lipodystrophy had less lower-limb adipose tissue than women without lipodystrophy, but significantly more than patients with Dunnigan disease. Moreover, metabolic disturbances occurred more frequently in the type 1 familial partial lipodystrophy group (81 %) than in the non-lipodystrophic group (30 %, p<0.05). The severity of metabolic disturbances was inversely proportional to the percentage of fat in the lower extremities and directly proportional to the amount of visceral adipose tissue. Metabolic profiles were worse in type 1 familial partial lipodystrophy than in Dunnigan disease. According to the receiver-operating characteristic curve analysis, the best ratio was subscapular/calf skinfolds (KöB index), with a cut-off value of 3.477 (sensitivity: 89 %; specificity: 84 %). Type 1 familial partial lipodystrophy was an early-onset, autosomal-dominant lipodystrophy, characterized by fat loss in the lower limbs and abnormal fat accumulation in the abdominal visceral region, associated to insulin resistance and metabolic disorders. A KöB index >3.477 is highly suggestive of this syndrome.


Subject(s)
Body Composition/physiology , Insulin Resistance/physiology , Lipids/blood , Lipodystrophy, Familial Partial/diagnosis , Phenotype , Absorptiometry, Photon , Adult , Case-Control Studies , Female , Humans , Insulin/blood , Leptin/blood , Lipodystrophy, Familial Partial/blood , Lipodystrophy, Familial Partial/diagnostic imaging , Middle Aged , Symptom Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...