Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 101(6): 1711-1719, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29895349

ABSTRACT

Aloe vera (A. barbadensis Miller) is probably one of the most popular plants, widely studied because of numerous properties associated with the polysaccharides present in its gel. In particular, two main types of bioactive polysaccharides can be distinguished in the A. vera gel: an acetylated mannose-rich polymer that functions as storage polysaccharide, and a galacturonic acid-rich polymer as the main component comprising the cell walls of the parenchymatous tissue. Interestingly, most of the beneficial properties related to the aloe plant have been associated with the acetylated mannose-rich polysaccharide, also known as acemannan. However, the composition and structural features of these polysaccharides, as well as the beneficial properties associated with them, may be altered by different factors, such as the climate, soil, postharvest treatments, and processing. Further, different analytical methods have been used not only to identify but also to characterize the main polysaccharides found in parenchyma of A. vera leaf. Within this context, the main aim of this review is to summarize the most relevant information about the structural and compositional features of the main polysaccharides found in the A. vera gel as well as the most relevant analytical techniques used for their identification and their influence on the technological, functional, and beneficial properties related to the A. vera plant.


Subject(s)
Aloe/chemistry , Cellulose/chemistry , Mannans/chemistry , Pectins/chemistry , Carbohydrate Sequence , Cellulose/analysis , Mannans/analysis , Mannans/metabolism , Mannans/pharmacology , Pectins/analysis , Pectins/metabolism , Pectins/pharmacology , Rheology , Viscosity , Water/chemistry
2.
Carbohydr Polym ; 168: 327-336, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28457457

ABSTRACT

The main effects of different drying procedures: spray-, industrial freeze-, refractance window- and radiant zone-drying, on acemannan, the main bioactive polysaccharide from Aloe vera gel, were investigated. All the drying procedures caused a considerable decrease in the acemannan yield (∼40%). Degradation affected not only the backbone, as indicated by the important losses of (1→4)-linked mannose units, but also the side-chains formed by galactose. In addition, methylation analysis suggested the deacetylation of mannose units (>60%), which was confirmed by 1H NMR analysis. Interestingly, all these changes were reflected in the functional properties which were severely affected. Thus, water retention capacity values from processed samples decreased ∼50%, and a reduction greater than 80% was determined in swelling and fat adsorption capacity values. Therefore, these important modifications should be taken into consideration, since not only the functionality but also the physiological effects attributed to many Aloe vera-based products could also be affected.


Subject(s)
Aloe/chemistry , Desiccation , Mannans/chemistry , Polysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...