Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922226

ABSTRACT

Ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) has been described in human non-pathological endometrium in both epithelial and stromal components without changes along the cycle. It was identified as a stromal marker of basalis. In the present study, we aimed to evaluate NTPDase2 distribution, using immunolabeling and in situ enzyme activity approaches, in endometrial carcinoma (EC) at different tumor grades. NTPDase2 was present in tumor epithelial EC cells, as in the non-pathological endometria, but the expression underwent changes in subcellular distribution and also tended to decrease with the tumor grade. In stroma, NTPDase2 was identified exclusively at the tumor-myometrial junction but this expression was lost in tumors of invasive phenotype. We have also identified in EC samples the presence of the perivascular population of endometrial mesenchymal stem cells (eMSCs) positive for sushi domain containing 2 (SUSD2) and for NTPDase2, already described in non-tumoral endometrium. Our results point to NTPDase2 as a histopathological marker of tumor invasion in EC, with diagnostic relevance especially in cases of EC coexisting with other endometrial disorders, such as adenomyosis, which occasionally hampers the assessment of tumor invasion parameters.

2.
Purinergic Signal ; 15(2): 225-236, 2019 06.
Article in English | MEDLINE | ID: mdl-31123897

ABSTRACT

The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.


Subject(s)
Adenosine Triphosphatases/metabolism , Biomarkers/analysis , Endometrium/enzymology , Mesenchymal Stem Cells/enzymology , Adenomyosis/enzymology , Adenosine Triphosphatases/analysis , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Stromal Cells/enzymology
3.
Histochem Cell Biol ; 149(3): 269-276, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29273916

ABSTRACT

Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those taking place in oviducts, including contraction, beating of cilia, and maintenance of fluid composition that, in turn, influences sperm capacitation and hyperactivation, as well as oocyte and embryo nourishing. Ecto-nucleotidases are the enzymes that regulate extracellular ATP and adenosine levels, thus playing a role in reproduction. We have optimized a convenient method for characterizing ecto-nucleotidases that simultaneously localizes the protein and its associated enzyme activity in the same tissue slice and characterizes ecto-nucleotidases in human oviducts. The technique combines immunofluorescence and in situ histochemistry, allowing precise identification of ecto-nucleotidases at a subcellular level. In oviducts, remarkably, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, with the ability to hydrolyze ATP to AMP, are expressed in ciliated epithelial cells but with different subcellular localization. Ecto-5'nucleotidase/CD73 is also expressed apically in ciliated cells. CD73, together with alkaline phosphatase, also expressed apically in oviductal epithelium, complete the hydrolysis sequence by dephosphorylating AMP to adenosine. The concerted action of these enzymes would contribute to the local increase of adenosine concentration necessary for sperm capacitation. The use of this method would be an asset for testing new potential therapeutic drugs with inhibitory potential, which is of great interest presently in the field of oncology and in other clinical disciplines.


Subject(s)
5'-Nucleotidase/analysis , 5'-Nucleotidase/metabolism , Adenosine Triphosphatases/analysis , Adenosine Triphosphatases/metabolism , Fallopian Tubes/enzymology , 5'-Nucleotidase/biosynthesis , Adenosine Triphosphatases/biosynthesis , Adult , Female , GPI-Linked Proteins/analysis , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/metabolism , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...