Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 133: 433-41, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27517140

ABSTRACT

Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43µM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser extent, the net photosynthesis (40% inhibition) in both strains of phytoplankton and a moderate decrease in soil bacteria viability. These results suggest that AgI from cloud seeding may moderately affect biota living in both terrestrial and aquatic ecosystems if cloud seeding is repeatedly applied in a specific area and large amounts of seeding materials accumulate in the environment.


Subject(s)
Bacteria/drug effects , Caenorhabditis elegans/drug effects , Chlorophyta/drug effects , Iodides/toxicity , Microcystis/drug effects , Silver Compounds/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Animals , Bacillus cereus/drug effects , Biological Assay , Biota , Environmental Monitoring/methods , Fresh Water , Nematoda/drug effects , Photosynthesis/drug effects , Pseudomonas/drug effects , Risk , Toxicity Tests/methods
2.
Chemosphere ; 86(8): 802-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22169206

ABSTRACT

In this work, nanoscale zero-valent iron (NZVI) particles have been used as an immobilisation strategy to reduce Pb and Zn availability and mobility in polluted soils. The application of NZVI to two soil microcosms (MPb and MZn) at a dose of 34 mg g(-1) soil efficiently immobilised Pb (25%) and zinc (20%). Exposure to NZVI had little impact on the microbial cellular viability and biological activity in the soils. Three bacterial genes (narG, nirS and gyrA) were used as treatment-related biomarkers. These biomarkers ruled out a broad bactericidal effect on the bulk soil microbial community. A transcriptome analysis of the genes did not reveal any changes in their expression ratios after the NZVI treatment: 1.6 (narG), 0.8 (nirS) and 0.7 (gyrA) in the MPb microcosm and 0.6 (narG), 1.2 (nirS) and 0.5 (gyrA) in the MZn microcosm. However, significant changes in the structure and composition of the soil bacteria population were detected by fluorescence in situ hybridisation. Thus, our results showed that NZVI toxicity could be highly dose and species dependent, and the effective applicability of the proposed molecular approach in assessing the impact of this immobilisation strategy on soil microbial population.


Subject(s)
Iron/toxicity , Lead/isolation & purification , Nanostructures/toxicity , Soil Microbiology , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Genes, Bacterial/drug effects , Iron/chemistry , Nanostructures/chemistry , Nanotechnology , Phylogeny , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...