Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(28): 10928-10939, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37390357

ABSTRACT

This work presents two isostructural Cu(I)-I 2-fluoropyrazine (Fpyz) luminescent and semiconducting 2D coordination polymers (CPs). Hydrothermal synthesis allows the growth of P-1 space group single crystals, whereas solvent-free synthesis produces polycrystals. Via recrystallization in acetonitrile, P21 space group single crystals are obtained. Both show a reversible luminescent response to temperature and pressure. Structure determination by single-crystal X-ray diffraction at 200 and 100 K allows us to understand their response as a function of temperature. Applying hydrostatic/uniaxial pressure or grinding also generates significant variations in their emission. The high structural flexibility of the Cu(I)-I chain is significantly linked to the corresponding alterations in structure. Remarkably, pressure can increase the conductivity by up to 3 orders of magnitude. Variations in resistivity are consistent with changes in the band gap energy. The experimental results are in agreement with the DFT calculations. These properties may allow the use of these CPs as optical pressure or temperature sensors. In addition, their behavior as a heterogeneous photocatalyst of persistent organic dyes has also been investigated.

2.
Dalton Trans ; 50(27): 9512-9518, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34254617

ABSTRACT

The green, red, near-infrared and near-infrared-to-visible upconverted luminescence properties of Er3+/Yb3+ codoped Y3Ga5O12 nanocrystalline powders have been studied using laser spectroscopy. A diffuse reflectance and luminescence spectra confirm that Er3+ and Yb3+ ions occupy the Y3+ sites of the single-phase cubic nano-garnet. Very bright green and red luminescence of the Er3+ ions are detected by the naked eyes, even for a laser power as low as 15 mW, when the Yb3+ ions are excited at 970 nm. The red upconverted emission is more intense than that under direct excitation of the Er3+ ions. The power dependence and the dynamics of the near-infrared-to-green and near-infrared-to-red upconverted emissions show the existence of different two-photon energy transfer upconversion processes. The results here presented indicate that Er3+/Yb3+ codoped Y3Ga5O12 can be a good candidate as an optical nanoheater and nanothermometer in biomedicine applications in the first biological window.

3.
Inorg Chem ; 60(2): 1208-1219, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33378202

ABSTRACT

Two coordination polymers with formulas [CuI(dapym)]n and [Cu2I2(dapym)]n (dapym = 2,4-diaminopyrimidine) have been synthesized in water at room temperature. According to the stoichiometry used, mono (1D) and the two-dimensional (2D) structures can be obtained. Both are made up of Cu2I2 double chains. Their high insolubility in the reaction medium also makes it possible to obtain them on a nanometric scale. Their structural flexibility and short Cu-Cu distances provoke interesting optoelectronic properties and respond to physical stimuli such as pressure and temperature, making them interesting for sensor applications. The experimental and theoretical studies allow us to propose different emission mechanisms with different behaviors despite containing the same organic ligand. These behaviors are attributed to their structural differences. The emission spectra versus pressure and temperature suggest competencies between different transitions, founding critical Cu2I2 environments, i.e., symmetric in the 1D compound and asymmetric for the 2D one. The intensity in the 2D compound's emission increases with decreasing temperature, and this behavior can be rationalized with a structural constriction that decreases the Cu-Cu and Cu-I distances. However, compound 1D exhibits a contrary behavior that may be related to a change of the organic ligand's molecular configuration. These changes imply that a more significant Π-Π interaction counteracts the contraction in distances and angles when the temperature decreased. Also, the experimental conductivity measurements and theoretical calculations show a semiconductor behavior. The absorption of the 1D compound in UV, its intense emission at room temperature, and the reduction to nanometric size have allowed us to combine it homogeneously with ethyl vinyl acetate (EVA), creating a new composite material. The external quantum efficiency of this material in a Si photovoltaic mini-module has shown that this compound is an active species with application in solar cells since it can move the photons of the incident radiation (UV region) to longer wavelengths.

4.
Inorg Chem ; 59(14): 9648-9666, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32584569

ABSTRACT

We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (Tb2O3). Powder X-ray diffraction and Raman scattering measurements show that cubic Ia3̅ (C-type) Tb2O3 undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic C2/m (B-type) phase at ∼7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal P3̅m1 (A-type) phase at ∼12 GPa. Thus, Tb2O3 is found to follow the well-known C → B → A phase transition sequence found in other cubic rare earth sesquioxides with cations of larger atomic mass than Tb. Our ab initio theoretical calculations predict phase transition pressures and bulk moduli for the three phases in rather good agreement with experimental results. Moreover, Raman-active modes of the three phases have been monitored as a function of pressure, while lattice-dynamics calculations have allowed us to confirm the assignment of the experimental phonon modes in the C- and A-type phases as well as to make a tentative assignment of the symmetry of most vibrational modes in the B-type phase. Finally, we extract the bulk moduli and the Raman-active mode frequencies together with their pressure coefficients for the three phases of Tb2O3. These results are thoroughly compared and discussed in relation to those reported for rare earth and other related sesquioxides as well as with new calculations for selected sesquioxides. It is concluded that the evolution of the volume and bulk modulus of all the three phases of these technologically relevant compounds exhibit a nearly linear trend with respect to the third power of the ionic radii of the cations and that the values of the bulk moduli for the three phases depend on the filling of the f orbitals.

5.
Chem Sci ; 9(41): 8000-8010, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30450184

ABSTRACT

One-pot reactions between CuI and methyl or methyl 2-amino-isonicotinate give rise to the formation of two coordination polymers (CPs) based on double zig-zag Cu2I2 chains. The presence of a NH2 group in the isonicotinate ligand produces different supramolecular interactions affecting the Cu-Cu distances and symmetry of the Cu2I2 chains. These structural variations significantly modulate their physical properties. Thus, both CPs are semiconductors and also show reversible thermo/mechanoluminescence. X-ray diffraction studies carried out under different temperature and pressure conditions in combination with theoretical calculations have been used to rationalize the multi-stimuli-responsive properties. Importantly, a bottom-up procedure based on fast precipitation leads to nanofibers of both CPs. The dimensions of these nanofibres enable the preparation of thermo/mechanochromic film composites with polyvinylidene difluoride. These films are tens of nanometers in thickness while being centimeters in length, representing smaller thicknesses so far reported for thin-film composites. This nanomaterial integration of CPs could represent a source of alternative nanomaterials for opto-electronic device fabrication.

6.
J Chem Phys ; 148(4): 044201, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29390818

ABSTRACT

Pressure-induced energy blue- and red-shifts of the 4F3/2 → 4I9/2,11/2 near-infrared emission lines of Nd3+ ions in YAlO3 perovskite nano-particles have been measured from ambient conditions up to 29 GPa. Different positive and negative linear pressure coefficients have been calibrated for the emission lines and related to pressure-induced changes in the interactions between those Nd3+ ions and their twelve oxygen ligands at the yttrium site. Potentiality of the simple overlap model, combined with ab initio structural calculations, in the description of the effects of these interactions on the energy levels and luminescence properties of the optically active Nd3+ ion is emphasized. Simulations show how the energies of the 4f3 ground configuration and the barycenters of the multiplets increase with pressure, whereas the Coulomb interaction between f-electrons decreases and the crystal-field strength increases. All these effects combined explain the wavelength blue-shifts of some near-infrared emission lines of Nd3+ ions. Large pressure rates of various emission lines suggest that a YAlO3 perovskite nano-crystal can be a potential candidate for near-infrared optical pressure sensors.

7.
Inorg Chem ; 55(15): 7476-84, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27429246

ABSTRACT

Copper(I) iodine compounds can exhibit interesting mechanochromic and thermochromic luminescent properties with important technological applications. We report the synthesis and structure determination by X-ray diffraction of a new polymeric staircase copper(I) iodine compound catena(bis(µ2-iodo)-6-methylquinoline-copper(I), [C10H9CuIN]. The structure is composed of isolated polymeric staircase chains of copper-iodine coordinated to organic ligands through Cu-N bonds. High pressure X-ray diffraction to 6.45 GPa shows that the material is soft, with a bulk modulus K0 = 10.2(2)GPa and a first derivative K'0 = 8.1(3), typical for organometallic compounds. The unit-cell compression is very anisotropic with the stiffest direction [302] arising from a combination of the stiff CuI ladders and the shear of the planar quinolone ligands over one another. Full structure refinements at elevated pressures show that pressures reduce the Cu···Cu distances in the compound. This effect is detected in luminescence spectra with the appearance of four sub-bands at 515, 600, 647, and 712 nm above 3.5 GPa. Red-shifts are observed, and they are tentatively associated with interactions between copper(I) ions due to the shortening of the Cu···Cu distances induced by pressure, below twice the van der Waals limit (2.8 Å). Additionally, ab initio simulations were performed, and they confirmed the structure and the results obtained experimentally for the equation of state. The simulation allowed the band structure and the electronic density of states of this copper(I) iodine complex to be determined. In particular, the band gap decreases slowly with pressure in a quadratic way with dEg/dP = -0.011 eV/GPa and d(2)Eg/dP(2) = 0.001 eV/GPa(2).

8.
Phys Chem Chem Phys ; 18(21): 14720-9, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27185655

ABSTRACT

Nanocrystalline Lu3Ga5O12 garnets doped with Tm(3+)/Yb(3+) ions have been synthesized by a low cost and environmentally benign sol-gel technique and characterized for their structural, Stokes and anti-Stokes luminescence properties. The diffuse reflectance spectra of doped Lu3Ga5O12 nano-garnets have been measured to derive the partial energy level structure of Tm(3+) and Yb(3+) ions and possible energy transfer channels between them. Upon laser excitation at 473 nm, weak red and intense near-infrared Stokes emissions have been observed in the nano-garnets. The decay curves of (3)H4 and (1)G4 levels of Tm(3+) ions and the (2)F5/2 level of Yb(3+) ions have been measured upon resonant laser excitation and are found to be non-exponential in nature due to multipolar interactions. In order to know the kind of multipolar interaction among optically active ions, the decay curves are analyzed through the generalized Yokota-Tanimoto model. Moreover, under 970 nm laser excitation, intense blue anti-Stokes emission is observed by the naked eye in Tm(3+)-Yb(3+) co-doped Lu3Ga5O12 nano-garnets. The results show that as-synthesized nano-garnets may be useful in the field of phosphors and photonics.

9.
J Chem Phys ; 130(15): 154501, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19388753

ABSTRACT

The correlation between the optical properties of the Eu(3+) ions and their local structures in fluorozirconate glasses and glass-ceramics have been analyzed by means of steady-state and time-resolved site-selective laser spectroscopies. Changes in the crystal-field interaction, ranging from weak to medium strength values, are observed monitoring the luminescence and the lifetime of the Eu(3+) ions in different local environments in the glass. As key roles in this study, the Eu(3+) luminescence in the thermally-induced crystallization of the glass and the pressure-induced amorphization of the crystalline phase of the glass-ceramic experimentally states the existence of a parent local structure for the Eu(3+) ions in the glass, identified as the EuZrF(7) crystalline phase. Starting from the ab initio single overlap model, crystal-field calculations have been performed in the glass and the glass-ceramic. From the site-selective measurements, the crystal-field parameters sets are obtained, giving a suitable simulation of the (7)F(J) (J=0-6) Stark energy level diagram for the Eu(3+) ions in the different environments present in the fluorozirconate glass. A simple geometrical model based on a continuous distortion of the parent structure is proposed for the distribution of local environments of the Eu(3+) ions in the fluorozirconate glass.

SELECTION OF CITATIONS
SEARCH DETAIL
...