Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118899, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37673007

ABSTRACT

Dissolved oxygen concentration and pH are controllable and cost-effective variables that determine the success of microalgae-related processes. The present study compares different control strategies for pH and dissolved oxygen in pilot-scale microalgae production systems. Two 80 m2 raceway reactors were used, one operated with freshwater plus fertilizer and the other with wastewater as the nutrient source. Both were in semi-continuous mode at a fixed dilution rate of 0.2 day-1. A comparison between the classical On-Off and more advanced pH control strategies, such as PI and Event-based control, was performed, focusing on biomass productivity and the influence of all the process parameters on microalgae growth; "No control" of pH was also assayed. The results show that Event-based control was the best algorithm when using freshwater plus fertilizer. In contrast, no significant differences were observed using the different control strategies when wastewater was the nutrient source. These experiments were performed through selective control strategy, prioritizing pH over dissolved oxygen; however, it was demonstrated that they did not allow to achieve satisfactory dissolved oxygen removal results, especially for the fertilizer system. After modifying the gas diffuser configuration and improving the mass transfer, independent on-off strategies have been developed, permitting effective control of both variables and increasing productivity by up to 20% in both systems. Concluding, a detailed analysis of the energy demand for each strategy implemented in terms of gas consumption and gas flow to biomass ratio is provided.


Subject(s)
Fertilizers , Microalgae , Wastewater , Nutrients , Oxygen , Hydrogen-Ion Concentration
2.
Bioresour Technol ; 369: 128374, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36423751

ABSTRACT

The present work aims to assess the treatment of unprocessed urban wastewater using the microalga Scenedesmus almeriensis. Two 12 m3 raceway reactors, one supplemented by wastewater and the second by chemical fertilizer, operating outdoors in a semi-continuous mode, were used for eight months. Results suggested that S. almeriensis can be produced in wastewater without affecting the photosynthetic apparatus reaching a productivity of 13 g·m-2·day-1 on average in both the systems. Furthermore, the nutrient content in terms of nitrogen, phosphorous and chemical oxygen demand of the wastewater was reduced under the European limitations during most of the period, with an average removal rate of 2.2, 0.2 and 3.0 g·m-2·day-1 respectively. Therefore, raceways demonstrated a high potential for microalgal production and successful biotreatment, proving robust and reliable. Finally, the effect of environmental conditions on biomass productivity of the clean system was evaluated in a model with high accuracy (R2 = 0.9, p = 0.0002).


Subject(s)
Microalgae , Scenedesmus , Wastewater , Biomass , Nitrogen/analysis , Photosynthesis , Phosphorus
3.
Biotechnol J ; 17(9): e2100489, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35567392

ABSTRACT

Irradiance and temperature are among the most important variables that affect microalgae growth, being both difficult to control in outdoor raceway reactors utilized for large-scale production of microalgae biomass. They are mainly a function of the location of the reactors, thus, producing certain strains of microalgae in inappropriate places conduces to the failure of the systems. To be able to determine important parameters of any microalgae strains on the performance of the culture, such as the influence of irradiance and temperature, is a powerful tool in decision-making processes. In addition, whatever the strain and location, operation strategies must be defined for each specific case, such as the imposed dilution rate and culture depth, both influencing the light availability and temperature of the culture as major variables determining the biomass productivity. In this paper, a simulation-based methodology is proposed to establish the influence of season and culture depth on the 1-year age irradiance and temperature of the culture, and thus on the biomass productivity of different microalgae strains. Up to five of the most frequently produced strains, such as Spirulina platensis, Chlorella vulgaris, Nannochloropsis gaditana, Isochrysis galbana, and Scenedesmus almeriensis have been considered. The challenge is to develop an easy-to-manage decision-making tool for the optimal design and operation of large-scale microalgae facilities. Especially, dates for microalgae production and culture depth at which the reactors must be operated will be provided, being valid for any microalgae strain. The proposed methodology will largely contribute to the risk of investment in this field, then to enlarge the relevance of the microalgae production industry.


Subject(s)
Chlorella vulgaris , Microalgae , Scenedesmus , Biomass , Seasons , Temperature
4.
N Biotechnol ; 70: 49-56, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35470100

ABSTRACT

Raceway reactors are still the most extensive technology for microalgae production. However, these reactors have some drawbacks, one of them being a low mass transfer capacity, which provokes dissolved oxygen accumulation and thus reduction of system performance. To overcome this problem, it is imperative to improve the photobioreactor design as well as the operating conditions. One solution is to maintain the dissolved oxygen below defined limits. In this work, a new control algorithm is proposed to improve the mass transfer capacity of raceway reactors while at the same time reducing air injection costs. The main idea of the proposed control approach is that only the necessary amount of airflow will be applied according to transfer capacity demand. This control strategy was first analyzed in simulation and compared with classical On/Off solutions, and subsequently evaluated in outdoor conditions in a photobioreactor of 80 m2.


Subject(s)
Microalgae , Algorithms , Biomass , Oxygen , Photobioreactors
5.
Biotechnol Bioeng ; 118(2): 877-889, 2021 02.
Article in English | MEDLINE | ID: mdl-33140848

ABSTRACT

In this study a simplified temperature model for raceway reactors is developed, allowing to determine the temperature of the microalgae culture as a function of reactor design and environmental conditions. The model considers the major phenomena taking place in raceway reactors, especially heat absorption by radiation and heat losses by evaporation among others. The characteristic parameters of the model have been calibrated using genetic algorithms, next being validated with a long set of more than 50 days covering different weather conditions. It is worth to highlight the use of the developed model as a tool to analyze the influence of the temperature on the performance of microalgae cultures at large scale. As example, the annual variation of the performance of up to five different microalgae strains has been determined by computing the temperature index, thus the normalized value of performance of whatever microalgae at the real temperature with respect to that achievable at optimal temperature can be established. Results confirm that only strains tolerant to wide ranges of temperature can be efficiently produced all the year around in large scale outdoor raceway reactors without additional temperature control systems.


Subject(s)
Biomass , Bioreactors , Hot Temperature , Light , Models, Biological , Microalgae
SELECTION OF CITATIONS
SEARCH DETAIL
...