Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673780

ABSTRACT

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Subject(s)
Cerebral Cortex , Cognitive Dysfunction , Glucuronidase , Klotho Proteins , Renal Insufficiency, Chronic , Animals , Male , Rats , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Disease Models, Animal , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Kidney/metabolism , Klotho Proteins/metabolism , Rats, Wistar , Renal Insufficiency, Chronic/metabolism
2.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36829843

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) and chronic kidney disease (CKD) are commonly associated with cardiovascular disease (CVD) and in these patients Mg concentration is usually decreased. This study evaluated whether a dietary Mg supplementation might attenuate vascular dysfunction through the modulation of oxidative stress and inflammation in concurrent MetS and CKD. METHODS: A rat model of MetS (Zucker strain) with CKD (5/6 nephrectomy, Nx) was used. Nephrectomized animals were fed a normal 0.1%Mg (MetS+Nx+Mg0.1%) or a supplemented 0.6%Mg (MetS+Nx+Mg0.6%) diet; Sham-operated rats with MetS receiving 0.1%Mg were used as controls. RESULTS: As compared to controls, the MetS+Nx-Mg0.1% group showed a significant increase in oxidative stress and inflammation biomarkers (lipid peroxidation and aortic interleukin-1b and -6 expression) and Endothelin-1 levels, a decrease in nitric oxide and a worsening in uremia and MetS associated pathology as hypertension, and abnormal glucose and lipid profile. Moreover, proteomic evaluation revealed changes mainly related to lipid metabolism and CVD markers. By contrast, in the MetS+Nx+Mg0.6% group, these parameters remained largely similar to controls. CONCLUSION: In concurrent MetS and CKD, dietary Mg supplementation reduced inflammation and oxidative stress and improved vascular function.

3.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32913635

ABSTRACT

Secondary hyperparathyroidism is a complex pathology that develops as chronic kidney disease progresses. The retention of phosphorus and the reductions in calcium and vitamin D levels stimulate the synthesis and secretion of parathyroid hormone as well as the proliferation rate of parathyroid cells. Parathyroid growth is initially diffuse but it becomes nodular as the disease progresses, making the gland less susceptible to be inhibited. Although the mechanisms underlying the pathophysiology of secondary hyperparathyroidism are well known, new evidence has shed light on unknown aspects of the deregulation of parathyroid function. Secondary hyperparathyroidism is an important feature of chronic kidney disease-mineral and bone disorder and plays an important role in the development of bone disease and vascular calcification. Thus, part of the management of chronic kidney disease relies on maintaining acceptable levels of mineral metabolism parameters in an attempt to slow down or prevent the development of secondary hyperparathyroidism. Here, we will also review the latest evidence regarding several aspects of the clinical and surgical management of secondary hyperparathyroidism.


Subject(s)
Hyperparathyroidism, Secondary , Renal Insufficiency, Chronic , Calcium/blood , Chronic Kidney Disease-Mineral and Bone Disorder , Humans , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/therapy , Parathyroid Hormone , Phosphorus/blood , Renal Insufficiency, Chronic/complications , Vitamin D/blood
4.
Eur J Intern Med ; 74: 79-85, 2020 04.
Article in English | MEDLINE | ID: mdl-31899053

ABSTRACT

BACKGROUND: Fibroblast growth factor 23 (FGF23) is a major determinant of mineral metabolism derangements and emerges as a possible risk factor underlying the negative cardiovascular outcome in CKD patients. However, its contribution in non-CKD individuals is less clear. This cross-sectional study investigated the associations between FGF23 and mineral metabolism parameters and with carotid atherosclerosis in a population at high cardiovascular risk with preserved renal function. METHODS: We employed 939 subjects with coronary heart disease enrolled in the CORDIOPREV study (mean eGFR=93.0 ±â€¯0.7 ml/min/1.73 m2 and median FGF23=44.9 (IQR=13.1) pg/ml), in which intima-media thickness of both common carotid arteries (IMT-CC) was measured. RESULTS: Adjusted for anthropometric factors, FGF23 associated positively with creatinine, phosphate, calcium and 25(OH)-vitaminD and negatively with eGFR and calcitriol. In multivariable-adjusted models all of them were independent contributors to FGF23 levels. FGF23 showed a positive relationship with IMT-CC; both the higher third and fourth quartiles associated significantly with IMT-CC (Beta= 0.135 and 0.187, respectively) and after additional adjustment for established cardiovascular risk factors and morbidities FGF23 remained as a significant contributor to IMT-CC. Logistic regression analysis confirmed its predictive ability to differentiate patients at higher atherosclerotic risk defined by an IMT-CC≥0.7 mm (OR for FGF23 quartiles 3 and 4 vs. 1: 1.860; 95%CI 1.209-2.862 and 2.114; 95%CI 1.339-3.337, respectively). CONCLUSION: Even in the setting of a normally functioning phosphate-FGF23-calcitriol system, FGF23 independently associated with IMT-CC, a surrogate of atherosclerotic vascular dysfunction. This supports the notion of FGF23 as a predictor of cardiovascular risk independent of renal failure.


Subject(s)
Carotid Artery Diseases , Kidney Diseases , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , Carotid Intima-Media Thickness , Cross-Sectional Studies , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Humans , Risk Factors
5.
Clin Sci (Lond) ; 134(1): 15-32, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31860056

ABSTRACT

Fibroblast growth factor 23 (FGF23) increases phosphorus excretion and decreases calcitriol (1,25(OH)2D) levels. FGF23 increases from early stages of renal failure. We evaluated whether strict control of phosphorus intake in renal failure prevents the increase in FGF23 and to what extent inflammation impairs regulation of FGF23. The study was performed in 5/6 nephrectomized (Nx) Wistar rats fed diets containing 0.2-1.2% phosphorus for 3 or 15 days. FGF23 levels significantly increased in all Nx groups in the short-term (3-day) experiment. However, at 15 days, FGF23 increased in all Nx rats except in those fed 0.2% phosphorus. In a second experiment, Nx rats fed low phosphorus diets (0.2 and 0.4%) for 15 days received daily intraperitoneal lipopolysaccharide (LPS) injections to induce inflammation. In these rats, FGF23 increased despite the low phosphorus diets. Thus, higher FGF23 levels were needed to maintain phosphaturia and normal serum phosphorus values. Renal Klotho expression was preserved in Nx rats on a 0.2% phosphorus diet, reduced on a 0.4% phosphorus diet, and markedly reduced in Nx rats receiving LPS. In ex vivo experiments, high phosphorus and LPS increased nuclear ß-catenin and p65-NFκB and decreased Klotho. Inhibition of inflammation and Wnt signaling activation resulted in decreased FGF23 levels and increased renal Klotho. In conclusion, strict control of phosphorus intake prevented the increase in FGF23 in renal failure, whereas inflammation independently increased FGF23 values. Decreased Klotho may explain the renal resistance to FGF23 in inflammation. These effects are likely mediated by the activation of NFkB and Wnt/ß-catenin signaling.


Subject(s)
Fibroblast Growth Factors/metabolism , Inflammation/metabolism , Kidney/metabolism , Uremia/metabolism , Animals , Calcitriol/pharmacology , Calcium/metabolism , Fibroblast Growth Factor-23 , Kidney/drug effects , Male , Phosphorus/metabolism , Rats, Wistar , Renal Insufficiency/metabolism , Renal Insufficiency, Chronic/metabolism , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology
6.
Kidney Int ; 95(5): 1064-1078, 2019 05.
Article in English | MEDLINE | ID: mdl-30878213

ABSTRACT

Calcimimetics decrease parathyroid hormone (PTH) secretion in patients with secondary hyperparathyroidism. The decrease in PTH should cause a reduction in bone turnover; however, the direct effect of calcimimetics on bone cells, which express the calcium-sensing receptor (CaSR), has not been defined. In this study, we evaluated the direct bone effects of CaSR activation by a calcimimetic (AMG 641) in vitro and in vivo. To create a PTH "clamp," total parathyroidectomy was performed in rats with and without uremia induced by 5/6 nephrectomy, followed by a continuous subcutaneous infusion of PTH. Animals were then treated with either the calcimimetic or vehicle. Calcimimetic administration increased osteoblast number and osteoid volume in normal rats under a PTH clamp. In uremic rats, the elevated PTH concentration led to reduced bone volume and increased bone turnover, and calcimimetic administration decreased plasma PTH. In uremic rats exposed to PTH at 6-fold the usual replacement dose, calcimimetic administration increased osteoblast number, osteoid surface, and bone formation. A 9-fold higher dose of PTH caused an increase in bone turnover that was not altered by the administration of calcimimetic. In an osteosarcoma cell line, the calcimimetic induced Erk1/2 phosphorylation and the expression of osteoblast genes. The addition of a calcilytic resulted in the opposite effect. Moreover, the calcimimetic promoted the osteogenic differentiation and mineralization of human bone marrow mesenchymal stem cells in vitro. Thus, calcimimetic administration has a direct anabolic effect on bone that counteracts the decrease in PTH levels.


Subject(s)
Biphenyl Compounds/administration & dosage , Bone Remodeling/drug effects , Calcimimetic Agents/administration & dosage , Hyperparathyroidism, Secondary/drug therapy , Kidney Failure, Chronic/complications , Phenethylamines/administration & dosage , Animals , Disease Models, Animal , Humans , Hyperparathyroidism, Secondary/blood , Hyperparathyroidism, Secondary/etiology , Male , Osteoblasts/drug effects , Parathyroid Hormone/administration & dosage , Parathyroid Hormone/blood , Parathyroid Hormone/metabolism , Rats , Rats, Wistar , Receptors, Calcium-Sensing/metabolism
7.
Semin Dial ; 32(5): 444-451, 2019 09.
Article in English | MEDLINE | ID: mdl-30656752

ABSTRACT

Secondary hyperparathyroidism, characterized by increased PTH synthesis and secretion, is often seen in advanced stages of chronic kidney disease. Excessive proliferation of parathyroid cells leads to the development of diffuse hyperplasia that subsequently progresses to nodular histology. Refractory hyperparathyroidism occurs when parathyroid glands fail to respond to medical therapy. Parathyroidectomy (PTX), surgical resection of parathyroid glands, is usually performed in cases of persistent serum levels of PTH above 1000 pg/mL associated with hypercalcemia or when hyperparathyroidism is refractory to conservative therapy. Parathyroidectomy can be carried out using different procedures: subtotal PTX or total PTX with or without parathyroid autotransplantation. Parathyroid surgery may have undesirable consequences due to PTH oversuppression, such as the development of adynamic bone disease; hungry bone syndrome is quite common after this surgery. However, PTX improves survival and parameters of mineral metabolism. Parathyroidectomy needs to be considered in those patients with severe hyperparathyroidism with a poor response to pharmacological treatment and with distinct undesirable effects of PTH on bone and mineral metabolism parameters.


Subject(s)
Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/surgery , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Parathyroidectomy , Renal Dialysis , Biomarkers/blood , Humans
8.
Sci Rep ; 8(1): 17822, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30531793

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 8(1): 15940, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374033

ABSTRACT

Chronic kidney disease is associated with increased risk of CKD progression and death. Therapeutic approaches to limit progression are limited. Developing tools for the early identification of those individuals most likely to progress will allow enriching clinical trials in high risk early CKD patients. The CKD273 classifier is a panel of 273 urinary peptides that enables early detection of CKD and prognosis of progression. We have generated urine capillary electrophoresis-mass spectrometry-based peptidomics CKD273 subclassifiers specific for CKD stages to allow the early identification of patients at high risk of CKD progression. In the validation cohort, the CKD273 subclassifiers outperformed albuminuria and CKD273 classifier for predicting rapid loss of eGFR in individuals with baseline eGFR > 60 ml/min/1.73 m2. In individuals with eGFR > 60 ml/min/1.73 m2 and albuminuria <30 mg/day, the CKD273 subclassifiers predicted rapid eGFR loss with AUC ranging from 0.797 (0.743-0.844) to 0.736 (0.689-0.780). The association between CKD273 subclassifiers and rapid progression remained significant after adjustment for age, sex, albuminuria, DM, baseline eGFR, and systolic blood pressure. Urinary peptidomics CKD273 subclassifiers outperformed albuminuria and CKD273 classifier for predicting the risk of rapid CKD progression in individuals with eGFR > 60 ml/min/1.73 m2. These CKD273 subclassifiers represented the earliest evidence of rapidly progressive CKD in non-albuminuric individuals with preserved renal function.


Subject(s)
Biomarkers/urine , Glomerular Filtration Rate/physiology , Renal Insufficiency, Chronic/diagnosis , Adult , Aged , Albuminuria/complications , Albuminuria/diagnosis , Area Under Curve , Disease Progression , Early Diagnosis , Female , Humans , Male , Middle Aged , Peptides/urine , Prognosis , ROC Curve , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/pathology , Risk Factors , Support Vector Machine
10.
PLoS One ; 13(8): e0201537, 2018.
Article in English | MEDLINE | ID: mdl-30086150

ABSTRACT

BACKGROUND: In hemodialysis patients, high levels of Fibroblast Growth Factor 23 (FGF23) predict mortality. Our study was designed to test whether the control of serum phosphate is associated with a reduction in serum FGF23 levels. Additionally other variables with a potential effect on FGF23 levels were evaluated. MATERIAL AND METHODS: The effect of sustained (40-weeks) control of serum phosphate on FGF23 levels (intact and c-terminal) was evaluated in 21 stable hemodialysis patients that were not receiving calcimimetics or active vitamin D. Patients received non-calcium phosphate binders to maintain serum phosphate below 4.5 mg/dl. In an additional analysis, values of intact-FGF23 (iFGF23) and c-terminal FGF23 (cFGF23) from 150 hemodialysis patients were correlated with parameters of mineral metabolism and inflammation. Linear mixed models and linear regression were performed to evaluate longitudinal trajectories of variables and the association between FGF23 and the other variables examined. RESULTS: During the 40-week treatment, 12 of 21 patients achieved the target of serum phosphate <4.5 mg/dl. In these 12 patients, iFGF23 decreased to less than half whereas cFGF23 did not reduce significantly. In patients with serum phosphate >4.5 mg, iFGF23 and cFGF23 increased two and four-fold respectively as compared with baseline. Furthermore, changes in serum phosphate correlated with changes in C-reactive protein (hs-CRP). In our 150 hemodialysis patients, those in the higher tertile of serum phosphate also showed increased hs-CRP, iPTH, iFGF23 and cFGF23. Multiple regression analysis revealed that iFGF23 levels directly correlated with both serum phosphate and calcium, whereas cFGF23 correlated with serum phosphate and hs-CRP but not with calcium. CONCLUSIONS: The control of serum phosphate reduced iFGF23. This reduction was also associated with a decreased in inflammatory parameters. Considering the entire cohort of hemodialysis patients, iFGF23 levels correlated directly with serum phosphate levels and also correlated inversely with serum calcium concentration. The levels of cFGF23 were closely related to serum phosphate and parameters of inflammation.


Subject(s)
Chelating Agents/therapeutic use , Fibroblast Growth Factors/blood , Hyperphosphatemia/drug therapy , Phosphates/blood , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/blood , Aged , Aged, 80 and over , C-Reactive Protein/analysis , Calcium/blood , Cross-Sectional Studies , Female , Fibroblast Growth Factor-23 , Humans , Hyperphosphatemia/blood , Hyperphosphatemia/etiology , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/therapy , Survival Analysis , Treatment Outcome
11.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495444

ABSTRACT

Patients with advanced chronic kidney disease exhibit an increase in cardiovascular mortality. Recent works have shown that low levels of magnesium are associated with increased cardiovascular and all-cause mortality in hemodialysis patients. Epidemiological studies suggest an influence of low levels of magnesium on the occurrence of cardiovascular disease, which is also observed in the normal population. Magnesium is involved in critical cellular events such as apoptosis and oxidative stress. It also participates in a number of enzymatic reactions. In animal models of uremia, dietary supplementation of magnesium reduces vascular calcifications and mortality; in vitro, an increase of magnesium concentration decreases osteogenic transdifferentiation of vascular smooth muscle cells. Therefore, it may be appropriate to evaluate whether magnesium replacement should be administered in an attempt to reduce vascular damage and mortality in the uremic population In the present manuscript, we will review the magnesium homeostasis, the involvement of magnesium in enzymatic reactions, apoptosis and oxidative stress and the clinical association between magnesium and cardiovascular disease in the general population and in the context of chronic kidney disease. We will also analyze the role of magnesium on kidney function. Finally, the experimental evidence of the beneficial effects of magnesium replacement in chronic kidney disease will be thoroughly described.


Subject(s)
Cardiovascular System/metabolism , Kidney/metabolism , Magnesium/metabolism , Animals , Apoptosis/drug effects , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/prevention & control , Cardiovascular System/drug effects , Disease Progression , Drug Overdose , Enzyme Activation/drug effects , Humans , Kidney/drug effects , Magnesium/blood , Magnesium/pharmacology , Magnesium/therapeutic use , Oxidative Stress/drug effects , Protective Agents/metabolism , Protective Agents/pharmacology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/prevention & control
12.
PLoS One ; 12(10): e0185981, 2017.
Article in English | MEDLINE | ID: mdl-28982165

ABSTRACT

Treatment of canine leishmaniasis (CanL) represents a challenge. Due to the high prevalence of renal disease associated to CanL, it is important to find an effective drug that does not damage the kidneys. Marbofloxacin has been shown to be effective and well tolerated in non-azotemic dogs with leishmaniasis. To evaluate the safety and efficacy of marbofloxacin in dogs with leishmaniasis and decreased renal function, 28 dogs suffering from leishmaniasis and chronic kidney disease (CKD) were treated with oral marbofloxacin at 2 mg/Kg/day for 28 days. During treatment dogs were assessed by performing weekly physical exams, measuring blood pressure and evaluating blood and urine parameters. Lymph node aspirations were also obtained at days 0 and 28. The global clinical score decreased significantly, from 6.2±3.4 to 4.7±3.1 (p = 0.0001), after treatment. Marbofloxacin also decreased parasitic load in 72% of the dogs. No significant differences in plasma creatinine, urine specific gravity, urinary concentrations of cystatin C, ferritin and urinary protein loss were detected during treatment. A transient but significant decrease in blood pressure was detected up to day 14 (from 180.1±36.6 to 166.0±32.7 mmHg; p = 0.016). Moreover, dogs showed a significant increase in plasma albumin concentration (from 15.0±5.2 to 16.6±3.9 g/L; p = 0.014) and a significant decrease in globulin concentration (from 59.0±18.1 to 54.1±18.0 g/L; p = 0.005). The results demonstrate that, in addition to being effective for treatment of CanL, marbofloxacin is a very safe drug in dogs with CKD and leishmaniasis.


Subject(s)
Fluoroquinolones/therapeutic use , Kidney Diseases/veterinary , Leishmaniasis/veterinary , Animals , Blood Pressure , Dogs , Female , Kidney Diseases/complications , Kidney Diseases/physiopathology , Kidney Function Tests , Leishmaniasis/complications , Leishmaniasis/drug therapy , Leishmaniasis/physiopathology , Male , Parasite Load , Real-Time Polymerase Chain Reaction
13.
PLoS One ; 12(10): e0186910, 2017.
Article in English | MEDLINE | ID: mdl-29084249

ABSTRACT

Treatment with empagliflozin, an inhibitor of the sodium/glucose cotransporter 2 (SGLT2), is associated with slower progression of diabetic kidney disease. In this analysis, we explored the hypothesis that empagliflozin may have an impact on urinary peptides associated with chronic kidney disease (CKD). In this post-hoc, exploratory analysis, we investigated urine samples obtained from 40 patients with uncomplicated type 1 diabetes (T1D) before and after treatment with empagliflozin for 8 weeks to for significant post-therapy changes in urinary peptides. We further assessed the association of these changes with CKD in an independent cohort, and with a previously established urinary proteomic panel, termed CKD273. 107 individual peptides significantly changed after treatment. The majority of the empagliflozin-induced changes were in the direction of "CKD absent" when compare to patients with CKD and controls. A classifier consisting of these 107 peptides scored significantly different in controls, in comparison to CKD patients. However, empagliflozin did not impact the CKD273 classifier. Our data indicate that empagliflozin induces multiple significant changes in the urinary proteomic markers such as mucin and clusterin. The relationship between empagliflozin-induced proteomic changes and clinical outcomes merits further investigation.


Subject(s)
Proteome/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 , Urine
14.
Kidney Int ; 92(5): 1084-1099, 2017 11.
Article in English | MEDLINE | ID: mdl-28760336

ABSTRACT

Although magnesium has been shown to prevent vascular calcification in vitro, controlled in vivo studies in uremic animal models are limited. To determine whether dietary magnesium supplementation protects against the development of vascular calcification, 5/6 nephrectomized Wistar rats were fed diets with different magnesium content increasing from 0.1 to 1.1%. In one study we analyzed bone specimens from rats fed 0.1%, 0.3%, and 0.6% magnesium diets, and in another study we evaluated the effect of intraperitoneal magnesium on vascular calcification in 5/6 nephrectomized rats. The effects of magnesium on established vascular calcification were also evaluated in uremic rats fed on diets with either normal (0.1%) or moderately increased magnesium (0.6%) content. The increase in dietary magnesium resulted in a marked reduction in vascular calcification, together with improved mineral metabolism and renal function. Moderately elevated dietary magnesium (0.3%), but not high dietary magnesium (0.6%), improved bone homeostasis as compared to basal dietary magnesium (0.1%). Results of our study also suggested that the protective effect of magnesium on vascular calcification was not limited to its action as an intestinal phosphate binder since magnesium administered intraperitoneally also decreased vascular calcification. Oral magnesium supplementation also reduced blood pressure in uremic rats, and in vitro medium magnesium decreased BMP-2 and p65-NF-κB in TNF-α-treated human umbilical vein endothelial cells. Finally, in uremic rats with established vascular calcification, increasing dietary magnesium from 0.1% magnesium to 0.6% reduced the mortality rate from 52% to 28%, which was associated with reduced vascular calcification. Thus, increasing dietary magnesium reduced both vascular calcification and mortality in uremic rats.


Subject(s)
Bone and Bones/metabolism , Dietary Supplements , Magnesium/administration & dosage , Phosphates/metabolism , Uremia/complications , Vascular Calcification/diet therapy , Animals , Chelating Agents/administration & dosage , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Magnesium/blood , Male , Nephrectomy , Rats , Rats, Wistar , Uremia/blood , Uremia/diet therapy , Vascular Calcification/blood , Vascular Calcification/mortality
15.
Sci Rep ; 7(1): 7839, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798480

ABSTRACT

Mesenchymal stem cells (MSC) are osteoblasts progenitors and a variety of studies suggest that they may play an important role for the health in the field of bone regeneration. Magnesium supplementation is gaining importance as adjuvant treatment to improve osteogenesis, although the mechanisms involving this process are not well understood. The objective of this study was to investigate the effects of magnesium on MSC differentiation. Here we show that in rat bone marrow MSC, magnesium chloride increases MSC proliferation in a dose-dependent manner promoting osteogenic differentiation and mineralization. These effects are reduced by 2-APB administration, an inhibitor of magnesium channel TRPM7. Of note, magnesium supplementation did not increase the canonical Wnt/ß-catenin pathway, although it promoted the activation of Notch1 signaling, which was also decreased by addition of 2-APB. Electron microscopy showed higher proliferation, organization and maturation of osteoblasts in bone decellularized scaffolds after magnesium addition. In summary, our results demonstrate that magnesium chloride enhances MSC proliferation by Notch1 signaling activation and induces osteogenic differentiation, shedding light on the understanding of the role of magnesium during bone regeneration.


Subject(s)
Cell Differentiation/drug effects , Magnesium Chloride/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Animals , Bone and Bones/cytology , Boron Compounds/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Enzyme Inhibitors/metabolism , Microscopy, Electron , Rats , TRPM Cation Channels/antagonists & inhibitors
16.
Clin Sci (Lond) ; 131(13): 1449-1463, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28442557

ABSTRACT

In chronic kidney disease patients, high phosphate (HP) levels are associated with cardiovascular disease, the major cause of morbidity and mortality. Since serum phosphate has been independently correlated with inflammation, the present study aimed to investigate an independent direct effect of HP as a pro-inflammatory factor in VSMCs. A possible modulatory effect of vitamin D (VitD) was also investigated. The study was performed in an in vitro model of human aortic smooth muscle cells (HASMCs). Incubation of cells in an HP (3.3 mM) medium caused an increased expression of the pro-inflammatory mediators intercellular adhesion molecule 1 (ICAM-1), interleukins (ILs) IL-1ß, IL-6, IL-8 and tumour necrosis factor α (TNF-α) (not corroborated at the protein levels for ICAM-1), as well as an increase in reactive oxygen/nitrogen species (ROS/RNS) production. This was accompanied by the activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling as demonstrated by the increase in the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κΒ) assessed by Western blotting and confocal microscopy. Since all these events were attenuated by an antioxidant pre-incubation with the radical scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), it is suggested that the inflammatory response is upstream mediated by the ROS/RNS-induced activation of NF-κΒ. Addition of paricalcitol (PC) 3·10-8 M to cells in HP prevented the phosphate induced ROS/RNS increase, the activation of NF-κΒ and the cytokine up-regulation. A bimodal effect was observed, however, for different calcitriol (CTR) concentrations, 10-10 and 10-12 M attenuated but 10-8 M stimulated this phosphate induced pro-oxidative and pro-inflammatory response. Therefore, these findings provide novel mechanisms whereby HP may directly favour vascular dysfunctions and new insights into the protective effects exerted by VitD derivatives.


Subject(s)
Inflammation Mediators/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phosphates/pharmacology , Aorta/cytology , Aorta/metabolism , Calcitriol/administration & dosage , Calcitriol/pharmacology , Cell Nucleus/metabolism , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Ergocalciferols/pharmacology , Humans , Intercellular Adhesion Molecule-1/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Reactive Nitrogen Species/biosynthesis , Reactive Oxygen Species/metabolism , Transcription Factor RelA/metabolism
17.
Rev Endocr Metab Disord ; 18(1): 79-95, 2017 03.
Article in English | MEDLINE | ID: mdl-28378123

ABSTRACT

Uremic secondary hyperparathyroidism is a multifactorial and complex disease often present in advanced stages of chronic kidney disease. The accumulation of phosphate, the increased FGF23 levels, the reduction in active vitamin D production, and the tendency to hypocalcemia are persistent stimuli for the development and progression of parathyroid hyperplasia with increased secretion of PTH. Parathyroid proliferation may become nodular mainly in cases of advanced hyperparathyroidism. The alterations in the regulation of mineral metabolism, the development of bone disease and extraosseous calcifications are essential components of chronic kidney disease-mineral and bone disorder and have been associated with negative outcomes. The management of hyperparathyroidism includes the correction of vitamin D deficiency and control of serum phosphorus and PTH without inducing hypercalcemia. An update of the leading therapeutic tools available for the prevention and clinical management of secondary hyperparathyroidism, its diagnosis, and the main mechanisms and factors involved in the pathogenesis of the disease will be described in this review.


Subject(s)
Hyperparathyroidism, Secondary , Fibroblast Growth Factor-23 , Humans , Hyperparathyroidism, Secondary/diagnosis , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/metabolism , Hyperparathyroidism, Secondary/prevention & control
19.
Sci Rep ; 6: 36881, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841294

ABSTRACT

Rats with normal renal function (Experiment 1, n = 12) and uninephrectomized (1/2Nx) rats (Experiment 2, n = 12) were fed diets with normal P (NP) and either normal (NF) or high fat (HF). Rats with intact renal function (Experiment 3, n = 12) were also fed NF or HF diets with high P (HP). Additionally, uremic (5/6Nx) rats (n = 16) were fed HP diets with NF or HF. Feeding the HF diets resulted in significant elevation of plasma FGF23 vs rats fed NF diets: Experiment 1, 593 ± 126 vs 157 ± 28 pg/ml (p < 0.01); Experiment 2, 538 ± 105 vs 250 ± 18 pg/ml (p < 0.05); Experiment 3, 971 ± 118 vs 534 ± 40 pg/ml (p < 0.01). Rats fed HF diets showed P retention and decreased renal klotho (ratio klotho/actin) vs rats fed NF diets: Experiment 1, 0.75 ± 0.06 vs 0.97 ± 0.02 (p < 0.01); Experiment 2, 0.69 ± 0.07 vs 1.12 ± 0.08 (p < 0.01); Experiment 3, 0.57 ± 0.19 vs 1.16 ± 0.15 (p < 0.05). Uremic rats fed HF diet showed more severe vascular calcification (VC) than rats fed NF diet (aortic Ca = 6.3 ± 1.4 vs 1.4 ± 0.1 mg/g tissue, p < 0.001). In conclusion, energy-rich diets increased plasma levels of FGF23, a known risk factor of cardiovascular morbidity and mortality. Even though FGF23 has major phosphaturic actions, feeding HF diets resulted in P retention, likely secondary to decreased renal klotho, and aggravated uremic VC.


Subject(s)
Dietary Fats/adverse effects , Fibroblast Growth Factors/blood , Phosphorus/metabolism , Uremia/complications , Vascular Calcification/chemically induced , Animals , Body Weight , Gene Expression Regulation/drug effects , Glucuronidase/metabolism , Kidney/metabolism , Kidney/physiology , Klotho Proteins , Male , Rats , Uremia/metabolism , Vascular Calcification/metabolism
20.
Am J Physiol Renal Physiol ; 309(7): F638-47, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26246512

ABSTRACT

This study describes fiber-type adaptations in hindlimb muscles, the interaction of sex, and the role of hypoxia on this response in 12-wk ⅚ nephrectomized rats (Nx). Contractile, metabolic, and morphological features of muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of Nx rats, and compared with sham-operated controls. Rats of both sexes were considered in both groups. A slow-to-fast fiber-type transformation occurred in the tibialis cranialis of Nx rats, particularly in males. This adaptation was accomplished by impaired oxidative capacity and capillarity, increased glycolytic capacity, and no changes in size and nuclear density of muscle fiber types. An oxidative-to-glycolytic metabolic transformation was also found in the soleus muscle of Nx rats. However, a modest fast-to-slow fiber-type transformation, fiber hypertrophy, and nuclear proliferation were observed in soleus muscle fibers of male, but not of female, Nx rats. Serum testosterone levels decreased by 50% in male but not in female Nx rats. Hypoxia-inducible factor-1α protein level decreased by 42% in the tibialis cranialis muscle of male Nx rats. These data demonstrate that 12 wk of Nx induces a muscle-specific adaptive response in which myofibers do not change (or enlarge minimally) in size and nuclear density, but acquire markedly different contractile and metabolic characteristics, which are accompanied by capillary rarefaction. Muscle function and sex play relevant roles in these adaptations.


Subject(s)
Hindlimb/cytology , Hindlimb/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Nephrectomy , Animals , Body Weight/physiology , Capillaries/cytology , Capillaries/physiology , Eating/physiology , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Function Tests , Male , Muscle Fibers, Fast-Twitch/ultrastructure , Muscle Fibers, Slow-Twitch/ultrastructure , Myosin Heavy Chains/metabolism , Organ Size/physiology , Rats , Rats, Wistar , Sex Characteristics , Succinate Dehydrogenase/metabolism , Testosterone/metabolism , Uremia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...