Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1799: 148167, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36402178

ABSTRACT

Fibromyalgia is a complex pain syndrome without a precise etiology. Reduced monoamines levels in serum and cerebrospinal fluid in fibromyalgia patients has been reported and could lead to a dysfunction of descending pain modulatory system producing the painful syndrome. This study evaluated the role of D1-like dopamine receptors in the reserpine-induced fibromyalgia-like pain model in female Wistar rats. Reserpine-treated animals were intrathecally injected with different dopamine receptors agonists and antagonists, and small interfering RNAs (siRNAs) against D1 and D5 receptor subtypes. Withdrawal and muscle pressure thresholds were assessed with von Frey filaments and the Randall-Selitto test, respectively. Expression of D1-like receptors in lumbar spinal cord and dorsal root ganglion was determined using real time polymerase chain reaction (qPCR). Reserpine induced tactile allodynia and muscle hyperalgesia. Intrathecal dopamine and D1-like receptor agonist SKF-38393 induced nociceptive hypersensitivity in naïve rats, whilst this effect was prevented by the D1-like receptor antagonist SCH-23390. Moreover, SCH-23390 induced a sex-dependent antiallodynic effect in reserpine-treated rats. Furthermore, transient silencing of D1 and D5 receptors significantly reduced reserpine-induced hypersensitivity in female rats. Reserpine slightly increased mRNA D5 receptor expression in dorsal spinal cord, but not in DRG. This work provides new insights about the involvement of the spinal dopaminergic D1/D5 receptors in reserpine-induced hypersensitivity in rats.


Subject(s)
Fibromyalgia , Rats , Female , Animals , Fibromyalgia/chemically induced , Dopamine/physiology , Reserpine/adverse effects , Rats, Wistar , Pain/chemically induced , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Receptors, Dopamine , Receptors, Dopamine D1/agonists
2.
Eur J Pharmacol ; 920: 174855, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35227682

ABSTRACT

The purpose of this study was to investigate the mechanism of antiallodynic effect of tizanidine in neuropathic rats. Spinal nerve ligation reduced withdrawal threshold which was interpreted as tactile allodynia. Increasing doses of tizanidine induced a dose-dependent antiallodynic effect in nerve injured rats. Tizanidine was more effective in female than male neuropathic rats. This drug induced a lower antiallodynic effect in ovariectomized, compared with non-ovariectomized, neuropathic rats, while systemic reconstitution of estradiol (E2) levels in ovariectomized neuropathic females fully restored the antiallodynic effect of tizanidine. Naloxone reduced the antiallodynic effect of tizanidine in male but not in female neuropathic rats. Ovariectomy restored the antagonizing effect of naloxone in the antiallodynic effect of tizanidine, whereas treatment with E2 abolished the effect of naloxone on tizanidine activity. Rauwolscine (α2 antagonist) and imiloxan (α2B antagonist) completely abated tizanidine-induced antiallodynic effect in female neuropathic rats. In contrast, BRL-44408 (α2A antagonist) partially decreased the effect of tizanidine while JP-1302 (α2C antagonist) was ineffective. Rauwolscine, imiloxan and BRL-44408 decreased withdrawal threshold in naïve female rats. Rauwolscine did not modify withdrawal threshold in naïve male rats. AGN192403 (I1 antagonist), BU224 (I2 antagonist), prazosin (α1 antagonist) and methiothepin (5-HT antagonist) did not modify tizanidine-induced antiallodynia in neuropathic females and males. These data indicate that tizanidine exhibits a sex-dependent antiallodynic effect in neuropathy. Data also suggest that activation of adrenergic α2B and α2A and opioid receptors participate in the antiallodynic effect of tizanidine in female and male, respectively, neuropathic rats.


Subject(s)
Neuralgia , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Animals , Clonidine/analogs & derivatives , Clonidine/pharmacology , Clonidine/therapeutic use , Female , Hyperalgesia/drug therapy , Male , Neuralgia/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...