Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 194-212, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23385456

ABSTRACT

The different changes observed in the diffraction patterns of three different crystal forms (hexagonal, trigonal and monoclinic) of PurE (EC 4.1.1.21), an enzyme from the purine-biosynthesis pathway of Bacillus anthracis, upon a wide range of changes in the relative humidity environment of the crystals are documented. In addition, the changes in the unit-cell parameters, volume and bulk solvent in the three different crystal forms were systematically followed. In an attempt to explain the elastic (P6(5)22) and inelastic (P3(1)21) changes in the diffraction pattern, refined structures of the three different crystal forms determined at 100 K are presented, with particular emphasis on the tertiary and quaternary structural differences, crystal packing, intermolecular and intramolecular interactions and solvent structure. The refined structures show that the precipitant salts, solvent structure (both ordered and bulk) and conformation of the C-termini all play a role in creating a unique cement at both the intramolecular and intermolecular contacts of the different crystal forms. It is suggested that it is the combination of polyethylene glycol and the structure of the ordered water molecules (first and second layers) as well as the structure of the bulk solvent that are the critical factors in the plasticity of the hexagonal crystal packing as opposed to the inelastic responses of the lower symmetry forms.


Subject(s)
Bacterial Proteins/chemistry , Carboxy-Lyases/chemistry , Elastic Modulus , Humidity , Amino Acid Sequence , Bacillus anthracis/enzymology , Crystallography, X-Ray , Escherichia coli/enzymology , Models, Molecular , Molecular Sequence Data , Mycobacterium tuberculosis/enzymology
2.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 10): 1300-8, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22102052

ABSTRACT

The use of relative humidity control of protein crystals to overcome some of the shortcomings of soaking ligands (i.e. inhibitors, substrate analogs, weak ligands) into pre-grown apoprotein crystals has been explored. Crystals of PurE (EC 4.1.1.21), an enzyme from the purine-biosynthesis pathway of Bacillus anthracis, were used as a test case. The findings can be summarized as follows: (i) using humidity control, it is possible to improve/optimize the diffraction quality of crystals soaked in solutions of organic solvent (DMSO, ethanol) containing ligands/inhibitors; (ii) optimization of the relative humidity can compensate for the deterioration of the diffraction pattern that is observed upon desalting crystals grown in high salt; (iii) combining desalting protocols with the addition of PEG it is possible to achieve very high concentrations of weak ligands (in the 5-10 mM range) in soaking solutions and (iv) fine control of the relative humidity of crystals soaked in these solutions can compensate for the deterioration of crystal diffraction and restore `high-resolution' diffraction for structure-based and fragment-based drug design. It is suggested that these experimental protocols may be useful in other protein systems and may be applicable in academic or private research to increase the probability of obtaining structures of protein-ligand complexes at high resolution.


Subject(s)
Bacillus anthracis/enzymology , Carboxy-Lyases/chemistry , Crystallization , Crystallography, X-Ray , Humidity , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...