Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(6): 063003, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243531

ABSTRACT

Several aspects contributing to the temporal broadening in the measurement of ultrafast fluorescence by means of up-conversion wave mixing are presented: the characteristics of the sample, those of the collection optics, and the wave mixing with the gate pulse in a non-linear crystal. It is concluded that these contributions are emission wavelength dependent and can be as important as the pulse durations in determining the instrument response function in this technique.

2.
J Phys Chem Lett ; 11(6): 2182-2187, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32119551

ABSTRACT

Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-frequency alternating magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, the temperature determination around a single iron oxide nanoparticle remains a challenge. We study the heat released from iron oxide nanostructures under near-infrared illumination on a one-by-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity changes around the trapped particle as a function of the illuminating power, thus avoiding the use of thermal probes. Our results help interpret temperature, a statistical parameter, in the nanoscale and the concept of heat production by nanoparticles under thermal agitation.


Subject(s)
Infrared Rays/therapeutic use , Phototherapy/methods , Humans , Magnetite Nanoparticles/chemistry
3.
ACS Nano ; 13(6): 7223-7230, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31194513

ABSTRACT

Laser tweezers afford quantum dot (QD) manipulation for use as localized emitters. Here, we demonstrate fluorescence by radiative energy transfer from optically trapped colloidal QDs (donors) to fluorescent dyes (acceptors). To this end, we synthesized silica-coated QDs of different compositions and triggered their luminescence by simultaneous trapping and two-photon excitation in a microfluidic chamber filled with dyes. This strategy produces a near-field light source with great spatial maneuverability, which can be exploited to scan nanostructures. In this regard, we demonstrate induced photoluminescence of dye-labeled cells via optically trapped silica-coated colloidal QDs placed at their vicinity. Allocating nanoscale donors at controlled distances from a cell is an attractive concept in fluorescence microscopy because it dramatically reduces the number of excited dyes, which improves resolution by preventing interferences from the whole sample, while prolonging dye luminescence lifetime due to the lower power absorbed from the QDs.

4.
Small ; 11(13): 1555-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25451550

ABSTRACT

3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface. In particular, substitution of cationic species at the surface by other species with higher mobility could lead to UCNPs trapping with constants comparable to those of spherical metallic nanoparticles.


Subject(s)
Nanoparticles , Optics and Photonics , Fluorescence , Microscopy, Electron, Transmission , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...