Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 28(10): 4234-4250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525013

ABSTRACT

With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.


Subject(s)
Cognitive Dysfunction , Lipidomics , Male , Female , Pregnancy , Humans , Neurons/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Cognitive Dysfunction/metabolism
2.
Neuropsychopharmacology ; 48(3): 540-551, 2023 02.
Article in English | MEDLINE | ID: mdl-36402837

ABSTRACT

Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.


Subject(s)
Dronabinol , Hippocampus , Dronabinol/pharmacology , Hippocampus/metabolism , Signal Transduction , Glutamic Acid/metabolism , Pyramidal Cells
3.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36171057

ABSTRACT

Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.


Subject(s)
Cannabinoids , Prenatal Exposure Delayed Effects , Animals , Cannabinoid Receptor Agonists , Dronabinol/toxicity , Endocannabinoids , Endophenotypes , Fatty Acids , Female , Humans , Male , Pregnancy , Rats , Rats, Wistar , Signal Transduction
4.
Article in English | MEDLINE | ID: mdl-32623021

ABSTRACT

Clinical and pre-clinical evidence demonstrates divergent psychotropic effects of THC vs. CBD. While THC can induce perceptual distortions and anxiogenic effects, CBD displays antipsychotic and anxiolytic properties. A key brain region responsible for regulation of cognition and affect, the medial prefrontal cortex (PFC), is strongly modulated by cannabinoids, suggesting that these dissociable THC/CBD-dependent effects may involve functional and molecular interplay within the PFC. The primary aim of this study was to investigate potential interactions and molecular substrates involved in PFC-mediated effects of THC and CBD on differential cognitive and affective behavioural processing. Male Sprague Dawley rats received intra-PFC microinfusions of THC, CBD or their combination, and tested in the latent inhibition paradigm, spontaneous oddity discrimination test, elevated T-maze and open field. To identify local, drug-induced molecular modulation in the PFC, PFC samples were collected and processed with Western Blotting. Intra-PFC THC induced strong panic-like responses that were counteracted with CBD. In contrast, CBD did not affect panic-like behaviours but blocked formation of associative fear memories and impaired latent inhibition and oddity discrimination performance. Interestingly, these CBD effects were dependent upon 5-HT1A receptor transmission but not influenced by THC co-administration. Moreover, THC induced robust phosphorylation of ERK1/2 that was prevented by CBD, while CBD decreased phosphorylation of p70S6K, independently of THC. These results suggest that intra-PFC infusion of THC promotes panic-like behaviour associated with increased ERK1/2 phosphorylation. In contrast, CBD impairs perceptive functions and latent inhibition via activation of 5-HT1A receptors and reduced phosphorylation of p70S6K.


Subject(s)
Cannabidiol/administration & dosage , Dronabinol/administration & dosage , Inhibition, Psychological , Panic/drug effects , Perception/drug effects , Prefrontal Cortex/drug effects , Animals , Anticonvulsants/administration & dosage , Discrimination Learning/drug effects , Discrimination Learning/physiology , Infusions, Intraventricular , Male , Panic/physiology , Perception/physiology , Prefrontal Cortex/physiology , Psychotropic Drugs/administration & dosage , Rats , Rats, Sprague-Dawley
5.
Elife ; 92020 06 09.
Article in English | MEDLINE | ID: mdl-32513388

ABSTRACT

Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.


Subject(s)
Drug Delivery Systems/methods , Huntington Disease/metabolism , Receptors, Dopamine D1 , Receptors, Histamine H3 , Animals , Cells, Cultured , Female , Gene Knock-In Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Piperidines/pharmacology , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Histamine H3/chemistry , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Visual Cortex/cytology
6.
Mol Neurobiol ; 54(6): 4537-4550, 2017 08.
Article in English | MEDLINE | ID: mdl-27370794

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D1, histamine H3, and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H3 receptor agonists, via negative cross-talk, and H3 receptor antagonists, via cross-antagonism, decreased D1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D1 receptor-mediated excitotoxic cell death. Both D1 and H3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D1-H3 receptor heteromer function. Likely due to heteromerization, H3 receptors act as allosteric regulator for D1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D1 or H3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D1-H3-NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H3 receptor antagonists reduced NMDA or D1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H3 receptor antagonists reverted the toxicity induced by ß1-42-amyloid peptide. Thus, histamine H3 receptors in D1-H3-NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.


Subject(s)
Alzheimer Disease/therapy , Molecular Targeted Therapy , Neurons/metabolism , Neurons/pathology , Receptors, Dopamine D1/metabolism , Receptors, Histamine H3/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Alzheimer Disease/pathology , Animals , Cell Death , Cerebral Cortex/pathology , Energy Transfer , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Male , Mice, Transgenic , Models, Biological , Neuroprotection , Phosphorylation , Protein Multimerization , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction
7.
Expert Opin Drug Discov ; 11(7): 641-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27135354

ABSTRACT

INTRODUCTION: Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED: This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION: The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.


Subject(s)
Drug Design , Receptors, Dopamine D3/agonists , Receptors, Dopamine D3/antagonists & inhibitors , Animals , Dopamine/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Drug Partial Agonism , Humans , Levodopa/adverse effects , Ligands , Molecular Targeted Therapy , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Receptors, Dopamine D3/metabolism
8.
J Neurosci ; 34(10): 3545-58, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24599455

ABSTRACT

The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits ß-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine.


Subject(s)
Cocaine/antagonists & inhibitors , Cocaine/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Histamine H3/metabolism , Receptors, sigma/metabolism , Signal Transduction/drug effects , Animals , Benzamides/administration & dosage , Benzazepines/administration & dosage , Benzazepines/metabolism , Cell Line, Tumor , Cocaine/toxicity , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Drug Delivery Systems/methods , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Organ Culture Techniques , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, sigma/antagonists & inhibitors , Signal Transduction/physiology , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...