Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 35607, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767071

ABSTRACT

While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states.

2.
Sci Rep ; 6: 34296, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694814

ABSTRACT

Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.

3.
Sci Rep ; 3: 2518, 2013.
Article in English | MEDLINE | ID: mdl-23989304

ABSTRACT

The high frequency dynamics of Indomethacin and Celecoxib glasses has been investigated by inelastic x-ray scattering, accessing a momentum-energy region still unexplored in amorphous pharmaceuticals. We find evidence of phonon-like acoustic dynamics, and determine the THz behavior of sound velocity and acoustic attenuation. Connections with ordinary sound propagation are discussed, along with the relation between fast and slow degrees of freedom as represented by non-ergodicity factor and kinetic fragility, respectively.


Subject(s)
Indomethacin/chemistry , Indomethacin/radiation effects , Pyrazoles/chemistry , Pyrazoles/radiation effects , Sound , Sulfonamides/chemistry , Sulfonamides/radiation effects , Terahertz Radiation , Celecoxib , Molecular Conformation/radiation effects , Radiation Dosage
4.
J Chem Phys ; 137(24): 244506, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23277944

ABSTRACT

Nanocalorimetry at ultrafast heating rates is used to investigate the glass transition of nanometer thick films of metastable amorphous solid water grown by vapor deposition in an ultrahigh vacuum environment. Apparent heat capacity curves exhibit characteristic features depending on the deposition temperature. While films grown at T ≥ 155 K are completely crystallized, those deposited at 90 K show a relaxation exotherm prior to crystallization. Films grown between 135 and 140 K and subsequently cooled down to 90 K reveal a clear endothermic feature before crystallization, which is compatible with a glass-to-liquid transition. The onset temperature is located at 174 K at a heating rate of 2.4 × 10(4) K/s and is independent of film thickness in the range of 16-150 nm. Comparison of our data with other calorimetric measurements at various heating rates suggests that water is a strong glass former in the deeply supercooled state.

5.
Phys Rev Lett ; 107(2): 025901, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797622

ABSTRACT

We report the thermodynamic measurement of the enthalpy released during the aging of supported films of a molecular glass former, toluene, at temperatures well below the glass transition temperature. By using microfabricated devices with very short equilibration times (below 1 s), we evidence a remarkable variation of the relaxation rate on decreasing film thickness from 100 nm down to a 7 nm thick film. Our results demonstrate that surface atoms are more efficient than bulk atoms in attaining low energy configurations within the potential energy landscape.

SELECTION OF CITATIONS
SEARCH DETAIL
...