Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731445

ABSTRACT

Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.


Subject(s)
Azo Compounds , Coloring Agents , Luffa , Water Pollutants, Chemical , Water Purification , Luffa/chemistry , Azo Compounds/chemistry , Azo Compounds/isolation & purification , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Kinetics , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Water/chemistry
2.
Front Chem ; 12: 1372292, 2024.
Article in English | MEDLINE | ID: mdl-38606079

ABSTRACT

The concentration effect of Tradescantia spathacea (T. spathacea) as corrosion inhibitor of API 5L X52 steel in 0.5 M of H2SO4 was studied here through electrochemical and gravimetric techniques. To achieve it, samples of the material were prepared to be submitted to each of the tests. Results from electrochemical impedance spectroscopy (EIS) showed that there was an optimum concentration of the inhibitor in which is reached the maximum inhibition efficiency, displaying the best inhibition characteristics for this system with a maximum inhibition of 89% by using 400 ppm. However, the efficiency decreased until 40% when the temperature was increased to 60°C. Potentiodynamic polarization curves (PDP) revealed that some of the present compounds of T. spathacea may affect anodic and cathodic process, so it can be classified as a mix-type corrosion inhibitor for API 5L X52 in sulfuric acid. Also, this compound followed an adsorption mechanism; this can be described through a Frumkin isotherm with an adsorption standard free energy difference (ΔG°) of -56.59 kJmol-1. Metal surface was studied through scanning electron microscope, results revealed that by adding inhibitor, the metal surface is protected; also, they evidenced low damages compared with the surface with no inhibitor. Finally, Tradescantia spathacea inhibited the corrosion process with 82% efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...