Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1227268, 2023.
Article in English | MEDLINE | ID: mdl-37936684

ABSTRACT

Introduction: The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods: Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion: C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions: These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Neuroblastoma , Humans , Mice , Animals , Phycocyanin/adverse effects , Nociception , Proteome , Neutrophil Infiltration , Mice, Inbred C57BL , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Gene Expression , Cytokines/pharmacology , Pain
2.
Front Mol Biosci ; 9: 834814, 2022.
Article in English | MEDLINE | ID: mdl-35359604

ABSTRACT

Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.

3.
Viruses ; 14(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35336959

ABSTRACT

Coronaviruses constitute a global threat to the human population; therefore, effective pan-coronavirus antiviral drugs are required to tackle future re-emerging virus outbreaks. Protein kinase CK2 has been suggested as a promising therapeutic target in COVID-19 owing to the in vitro antiviral activity observed after both pharmacologic and genetic inhibition of the enzyme. Here, we explored the putative antiviral effect of the anti-CK2 peptide CIGB-325 on bovine coronavirus (BCoV) infection using different in vitro viral infected cell-based assays. The impact of the peptide on viral mRNA and protein levels was determined by qRT-PCR and Western blot, respectively. Finally, pull-down experiments followed by Western blot and/or mass spectrometry analysis were performed to identify CIGB-325-interacting proteins. We found that CIGB-325 inhibited both the cytopathic effect and the number of plaque-forming units. Accordingly, intracellular viral protein levels were clearly reduced after treatment of BCoV-infected cells, with CIGB-325 determined by immunocytochemistry. Pull-down assay data revealed the physical interaction of CIGB-325 with viral nucleocapsid (N) protein and a group of bona fide CK2 cellular substrates. Our findings evidence in vitro antiviral activity of CIGB-325 against bovine coronavirus as well as some molecular clues that might support such effect. Altogether, data provided here strengthen the rationale of inhibiting CK2 to treat betacoronavirus infections.


Subject(s)
Coronavirus, Bovine , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Casein Kinase II/metabolism , Cattle , Peptides/pharmacology , Phosphorylation
4.
J Sep Sci ; 45(10): 1784-1796, 2022 May.
Article in English | MEDLINE | ID: mdl-35306742

ABSTRACT

Sample preparation and protein fractionation are important issues for proteomic studies. Protein extraction procedures strongly affect the performance of fractionation methods by provoking protein dispersion in several fractions. The most notable exception is the gel-based electrophoretic protein fractionation due to its resolution and effectiveness of sodium dodecyl sulfate as a solubilizing agent, while its main limitation lies in the poor recovery of the gel-trapped proteins. We created a fractionator device to separate complex mixture of proteins and peptides that is based on the continuous gel electrophoresis/electroelution sorting of these molecules. In an unsupervised process, complex mixtures of proteins or peptides are fractionated into the gel while separated fractions are simultaneously and sequentially electroeluted to the solution containing wells. The performance of the device was studied for protein fractionation in terms of reproducibility, protein recovery, and loading capacity. In a setup free of sodium dodecyl sulfate, complex peptide mixtures can also be fractionated. More than 11,700 proteins were identified in the whole-cell lysate of the CaSki cell line by using the fractionator combined with the filter-aided sample preparation method and mass spectrometry analysis. Fractionator-based proteome characterization increased 1.7-fold the number of identified proteins compared to the unfractionated sample analysis.


Subject(s)
Peptides , Proteomics , Electrophoresis, Polyacrylamide Gel , Peptides/chemistry , Proteome/analysis , Proteomics/methods , Reproducibility of Results , Sodium Dodecyl Sulfate/chemistry
5.
Biomedicines ; 11(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36672551

ABSTRACT

Large cell lung carcinoma (LCLC) is one form of NSCLC that spreads more aggressively than some other forms, and it represents an unmet medical need. Here, we investigated for the first time the effect of the anti-CK2 CIGB-300 peptide in NCI-H460 cells as an LCLC model. NCI-H460 cells were highly sensitive toward CIGB-300 cytotoxicity, reaching a peak of apoptosis at 6 h. Moreover, CIGB-300 slightly impaired the cell cycle of NCI-H460 cells. The CIGB-300 interactomics profile revealed in more than 300 proteins that many of them participated in biological processes relevant in cancer. Interrogation of the CK2 subunits targeting by CIGB-300 indicated the higher binding of the peptide to the CK2α' catalytic subunit by in vivo pull-down assays plus immunoblotting analysis and confocal microscopy. The down-regulation of both phosphorylation and protein levels of the ribonuclear protein S6 (RPS6) was observed 48 h post treatment. Altogether, we have found that NCI-H460 cells are the most CIGB-300-sensitive solid tumor cell line described so far, and also, the findings we provide here uncover novel features linked to CK2 targeting by the CIGB-300 anticancer peptide.

6.
Biomedicines ; 9(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34356831

ABSTRACT

Protein kinase CK2 has emerged as an attractive therapeutic target in acute myeloid leukemia (AML), an advent that becomes particularly relevant since the treatment of this hematological neoplasia remains challenging. Here we explored for the first time the effect of the clinical-grade peptide-based CK2 inhibitor CIGB-300 on AML cells proliferation and viability. CIGB-300 internalization and subcellular distribution were also studied, and the role of B23/nucleophosmin 1 (NPM1), a major target for the peptide in solid tumors, was addressed by knock-down in model cell lines. Finally, pull-down experiments and phosphoproteomic analysis were performed to study CIGB-interacting proteins and identify the array of CK2 substrates differentially modulated after treatment with the peptide. Importantly, CIGB-300 elicited a potent anti-proliferative and proapoptotic effect in AML cells, with more than 80% of peptide transduced cells within three minutes. Unlike solid tumor cells, NPM1 did not appear to be a major target for CIGB-300 in AML cells. However, in vivo pull-down experiments and phosphoproteomic analysis evidenced that CIGB-300 targeted the CK2α catalytic subunit, different ribosomal proteins, and inhibited the phosphorylation of a common CK2 substrates array among both AML backgrounds. Remarkably, our results not only provide cellular and molecular insights unveiling the complexity of the CIGB-300 anti-leukemic effect in AML cells but also reinforce the rationale behind the pharmacologic blockade of protein kinase CK2 for AML-targeted therapy.

7.
Cells ; 10(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562780

ABSTRACT

Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phosphoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and database mining were performed to identify biological processes, signaling pathways, and CK2 substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differentially modulated in HL-60 and OCI-AML3 cells, respectively. Despite regulated phosphopeptides belong to proteins involved in multiple biological processes and signaling pathways, most of these perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore, CK2 substrates regulated by CX-4945 are mainly related to mRNA processing, translation, DNA repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of signaling pathways and biological processes essential for primary AML cells survival and chemosensitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML targeted therapy.


Subject(s)
Casein Kinase II/therapeutic use , Leukemia, Myeloid, Acute/genetics , Naphthyridines/therapeutic use , Phenazines/therapeutic use , Casein Kinase II/pharmacology , Humans , Leukemia, Myeloid, Acute/pathology , Naphthyridines/pharmacology , Phenazines/pharmacology
8.
Clin Med Insights Cardiol ; 11: 1179546817694558, 2017.
Article in English | MEDLINE | ID: mdl-28469491

ABSTRACT

BACKGROUND: Growth hormone-releasing peptides (GHRPs) constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. METHODOLOGY: PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. RESULTS AND CONCLUSIONS: GHRPs bind to two different receptors (GHS-R1a and CD36), which redundantly or independently exert relevant biological effects. GHRPs' binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS) spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of "drugable" peptides awaits for a definitive clinical niche.

9.
J Proteomics ; 150: 183-200, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27568362

ABSTRACT

Hylesia metabus is a neotropical moth possessing toxic setae, which once in contact with the skin cause a severe dermatitis to humans known as lepidopterism. The only known function of the setae in the life cycle is to provide protection during the mating and egg-hatching stages. Approximately 65% of the protein content of the setae is a cluster of five proteases (28-45kDa) showing sequence homology to other S1A serine proteases. The N-glycans of a 40kDa protease are a mixture of neutral and sulfated G0F structures. The sulfated N-glycans have an important role in triggering the inflammatory response typical of lepidopterism while the proteolytic activity may promote the erosion of blood vessels and tissues causing focal hemorrhages. The presence of Chitinase and a 30kDa lipoprotein is probably related to the antifungal defense. In addition, chitin digestion of the setae may potentiate the inflammatory reaction caused by the toxins due to the formation of chitin adjuvants fragments. The combined effect of proteases and a chitinase may dissuade predating arthropods, by damaging their exoskeletons. Vitellogenin, a bacteriostatic protein, is able to recognize pathogen-associated patterns, which suggests its possible role in protecting the embryonated eggs from pathogenic microorganisms. SIGNIFICANCE: The present study is the first report describing the different protein species present in the urticating egg nest setae of the neotropical moth Hylesia metabus - the most harmful of the Hylesia moths - causing a severe urticating dermatitis in humans known as lepidopterism. A distinctive feature of the venom is the presence of five different S1A serine proteases probably used to guarantee a more efficient degradation of a wider number of protein substrates. This work confirms that the presence of sulfated N-glycans is not an isolated finding since its presence has been demonstrated in two different proteases affirming that this PTM is of importance for the activation of the inflammatory response typical of lepidopterism. Additionally, this study gives useful information on the defense mechanisms used for protection of its progeny vs. vertebrate predators, fungus, bacteria or other arthropods such as ants. The proteins detected in the egg nest should be seen as an extended parental effort made by the females in order to achieve an optimal reproductive success, thus compensating for the considerable loss of progeny during the larval stages that seriously limits the number of sexually mature adults reaching the reproductive phase.


Subject(s)
Dermatitis/metabolism , Insect Proteins/analysis , Moths/metabolism , Nesting Behavior , Sensilla/metabolism , Sexual Behavior, Animal , Zygote/metabolism , Animals , Female , Humans , Inflammation/metabolism , Insect Proteins/immunology , Insect Proteins/metabolism , Moths/physiology , Reproduction/physiology , Sensilla/chemistry
10.
Biomed Res Int ; 2015: 124082, 2015.
Article in English | MEDLINE | ID: mdl-26576414

ABSTRACT

CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Cell-Penetrating Peptides/chemistry , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Sequence Data , Neoplasms, Experimental/genetics , Protein Binding , Protein Interaction Mapping/methods , Proteome/chemistry , Proteome/metabolism , Proteomics/methods , Sequence Analysis, Protein/methods , Treatment Outcome
11.
Data Brief ; 4: 468-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26306321

ABSTRACT

CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis.

12.
J Proteomics ; 126: 163-71, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26013411

ABSTRACT

The second generation peptide CIGB-552 has a pro-apoptotic effect on H460 non-small cell lung cancer cells and displays a potent cytotoxic effect in HT-29 colon adenocarcinoma cells though its action mechanism is ill defined. Here, we present the first proteomic study of peptide effect in HT-29 cells using subcellular fractionation, protein and peptide fractionation by DF-PAGE and LC-MS/MS peptide identification. In particular, we explored the nuclear proteome of HT-29 cells at a 5h treatment identifying a total of 68 differentially modulated proteins, 49 of which localize to the nucleus. The differentially modulated proteins were analyzed following a system biology approach. Results pointed to a modulation of apoptosis, oxidative damage removal, NF-κB activation, inflammatory signaling and of cell adhesion and motility. Further Western blot and flow-cytometry experiments confirmed both pro-apoptotic and anti-inflammatory effects of CIGB-552 peptide in HT-29 cells.


Subject(s)
Adenocarcinoma , Antineoplastic Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Colonic Neoplasms , Neoplasm Proteins/biosynthesis , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Proteomics , Signal Transduction/drug effects
13.
Curr Top Med Chem ; 14(3): 435-49, 2014.
Article in English | MEDLINE | ID: mdl-24304321

ABSTRACT

Proteins are the principal mediators of the functions in the cell; therefore, any abnormal variations on their abundance levels may reflect the presence of pathological processes. In this sense, many researchers rely on the functional interpretation of protein lists generated by quantitative proteomics experiments to analyze, for instance, these variations in the context of diseases' molecular basis and drug discovery. Since no analytical strategy or bioinformatics tool by itself is capable of extract all the information covered by a single experiment; herein we seek to provide the biologists with four groups of different but complementary bioinformatics tools for the functional interpretation of quantitative proteomics results. To this end we will review the basic concepts of a set of different bioinformatics approaches and we will give examples of freely available tools for each one of these approaches.


Subject(s)
Proteins/metabolism , Proteomics/methods , Humans , Proteins/genetics
14.
Microbiology (Reading) ; 158(Pt 8): 2005-2016, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653946

ABSTRACT

The bacterial pathogen Vibrio cholerae requires colonizination of the human small intestine to cause cholera. The anaerobic and slightly acidic conditions predominating there enhance toxicity of low copper concentrations and create a selective environment for bacteria with evolved detoxifying mechanisms. We reported previously that the VCA0260, VCA0261 and VC2216 gene products were synthesized only in V. cholerae grown in microaerobiosis or anaerobiosis. Here we show that ORFs VCA0261 and VCA0260 are actually combined into a single gene encoding a 18.7 kDa protein. Bioinformatic analyses linked this protein and the VC2216 gene product to copper tolerance. Following the approach of predict-mutate and test, we describe for the first time, to our knowledge, the copper tolerance systems operating in V. cholerae. Copper susceptibility analyses of mutants in VCA0261-0260, VC2216 or in the putative copper-tolerance-related VC2215 (copA ATPase) and VC0974 (cueR), under aerobic and anaerobic growth, revealed that CopA represents the main tolerance system under both conditions. The VC2216-encoded periplasmic protein contributes to resistance only under anaerobiosis in a CopA-functional background. The locus tag VCA0261-0260 encodes a copper-inducible, CueR-dependent, periplasmic protein, which mediates tolerance in aerobiosis, but under anaerobiosis its role is only evident in CopA knock-out mutants. None of the genes involved in copper homeostasis were required for V. cholerae virulence or colonization in the mouse model. We conclude that copper tolerance in V. cholerae, which lacks orthologues of the periplasmic copper tolerance proteins CueO, CusCFBA and CueP, involves CopA and CueR proteins along with the periplasmic Cot (VCA0261-0260) and CopG (VC2216) V. cholerae homologues.


Subject(s)
Bacterial Proteins/metabolism , Cholera/microbiology , Copper/metabolism , Periplasmic Proteins/metabolism , Vibrio cholerae/metabolism , Vibrio cholerae/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Base Sequence , Gene Expression Regulation, Bacterial , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Periplasmic Proteins/genetics , Vibrio cholerae/genetics , Virulence
15.
J Proteome Res ; 9(10): 5473-83, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20804217

ABSTRACT

CIGB-300 is a proapoptotic peptide-based drug that abrogates the CK2-mediated phosphorylation. This peptide has antineoplastic effect on lung cancer cells in vitro and in vivo. To understand the mechanisms involved on such anticancer activity, the NCI-H125 cell line proteomic profile after short-term incubation (45 min) with CIGB-300 was investigated. As determined by 2-DE or 2D-LC-MS/MS, 137 proteins changed their abundances more than 2-fold in response to the CIGB-300 treatment. The expression levels of proteins related to ribosome biogenesis, metastasis, cell survival and proliferation, apoptosis, and drug resistance were significantly modulated by the presence of CIGB-300. The protein translation process was the most affected (23% of the identified proteins). From the proteome analysis of the NCI-H125 cell line, novel potentialities for CIGB-300 as anticancer agent were evidenced.


Subject(s)
Peptides, Cyclic/pharmacology , Protein Biosynthesis/drug effects , Proteome/analysis , Proteomics/methods , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatography, Liquid , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mass Spectrometry , Proteome/classification
16.
Res Microbiol ; 160(1): 48-56, 2009.
Article in English | MEDLINE | ID: mdl-19015025

ABSTRACT

Pathogenesis of the facultative anaerobe Vibrio cholerae takes place at the gut under low oxygen concentrations. To identify proteins which change their expression level in response to oxygen availability, proteomes of V. cholerae El Tor C7258 grown in aerobiosis, microaerobiosis and anaerobiosis were compared by two-dimensional electrophoresis. Twenty-six differentially expressed proteins were identified which are involved in several processes including iron acquisition, alanine metabolism, purine synthesis, energy metabolism and stress response. Moreover, two proteins implicated in exopolysaccharide synthesis and biofilm formation were produced at higher levels under microaerobiosis and anaerobiosis, which suggests a role of oxygen deprivation in biofilm development in V. cholerae. In addition, six proteins encoded at the Vibrio pathogenicity island attained the highest expression levels under anaerobiosis, and five of them are required for colonization: three correspond to toxin-coregulated pilus biogenesis components, one to soluble colonization factor TcpF and one to accessory colonization factor A. Thus, anaerobiosis promotes synthesis of colonization factors in V. cholerae El Tor, suggesting that it may be a key in vivo signal for early stages of the pathogenic process of V. cholerae.


Subject(s)
Bacterial Proteins/metabolism , Genomic Islands , Proteome/metabolism , Vibrio cholerae/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Bacterial , Oxygen/metabolism , Proteome/genetics , Vibrio cholerae/genetics , Vibrio cholerae/pathogenicity
17.
Proteomics ; 6(16): 4444-55, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16835850

ABSTRACT

A method for quantitative proteomic analysis based on the selective isolation of multiply charged peptides (RH peptides) containing arginine and histidine residues is described. Two pools of proteins are digested in tandem with lysyl-endopeptidase and trypsin and the primary amino groups of proteolytic peptides are separately labeled with d3- and d0-acetic anhydride. This reaction has a dual purpose: (i) to allow the relative protein quantification in two different conditions and (ii) to restrict the positive charges of peptides to the presence of arginine and histidine. The N-acylated peptides are separated by cation-exchange chromatography into two groups, neutral and singly charged peptides (R+H1) are retained into the column and can be eluted in batch or further fractionated using a saline gradient before LC-MS/MS analysis. In silico analysis revealed that the selective isolation of RH peptides considerably simplifies the complex mixture of peptides (three RH peptides/protein) and at the same time they represent 84% of the whole proteomes. The selectivity, and recovery of the method were evaluated with model proteins and with a complex mixture of proteins extracted from Vibrio cholerae.


Subject(s)
Peptides/chemistry , Proteome/chemistry , Vibrio cholerae/chemistry , Acetic Anhydrides/chemistry , Amino Acid Sequence , Arginine/chemistry , Chromatography, Ion Exchange , Histidine/chemistry , Mass Spectrometry , Molecular Sequence Data , Peptides/analysis , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Serine Endopeptidases/metabolism , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...