Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.992
Filter
1.
J Extracell Biol ; 3(6): e157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947172

ABSTRACT

Chemoresistance is a common problem in ovarian cancer (OvCa) treatment, where resistant cells, in response to chemotherapy, secrete small extracellular vesicles (sEVs), known as chemo-sEVs, that transfer resistance to recipient cells. sEVs are formed as intraluminal vesicles (ILVs) within multivesicular endosomes (MVEs), whose trafficking is regulated by Ras-associated binding (RAB) GTPases that mediate sEVs secretion or lysosomal degradation. A decrease in lysosomal function can promote sEVs secretion, but the relationship between MVEs trafficking pathways and sEVs secretion in OvCa chemoresistance is unclear. Here, we show that A2780cis cisplatin (CCDP) resistant OvCa cells had an increased number of MVEs and ILVs structures, higher levels of Endosomal Sorting Complex Required for Transport (ESCRTs) machinery components, and RAB27A compared to A2780 CDDP-sensitive OvCa cells. CDDP promoted the secretion of chemo-sEVs in A2780cis cells, enriched in DNA damage response proteins. A2780cis cells exhibited poor lysosomal function with reduced levels of RAB7, essential in MVEs-Lysosomal trafficking. The silencing of RAB27A in A2780cis cells prevents the Chemo-EVs secretion, reduces its chemoresistance and restores lysosomal function and levels of RAB7, switching them into an A2780-like cellular phenotype. Enhancing lysosomal function with rapamycin reduced chemo-sEVs secretion. Our results suggest that adjusting the balance between secretory MVEs and lysosomal MVEs trafficking could be a promising strategy for overcoming CDDP chemoresistance in OvCa.

2.
J Microsc ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963095

ABSTRACT

Flow or collective movement is a frequently observed phenomenon for many cellular components including the cytoskeletal proteins actin and myosin. To study protein flow in living cells, we and others have previously used spatiotemporal image correlation spectroscopy (STICS) analysis on fluorescence microscopy image time series. Yet, in cells, multiple protein flows often occur simultaneously on different scales resulting in superimposed fluorescence intensity fluctuations that are challenging to separate using STICS. Here, we exploited the characteristic that distinct protein flows often occur at different spatial scales present in the image series to disentangle superimposed protein flow dynamics. We employed a newly developed and an established spatial filtering algorithm to alternatively accentuate or attenuate local image intensity heterogeneity across different spatial scales. Subsequently, we analysed the spatially filtered time series with STICS, allowing the quantification of two distinct superimposed flows within the image time series. As a proof of principle of our analysis approach, we used simulated fluorescence intensity fluctuations as well as time series of nonmuscle myosin II in endothelial cells and actin-based podosomes in dendritic cells and revealed simultaneously occurring contiguous and noncontiguous flow dynamics in each of these systems. Altogether, this work extends the application of STICS for the quantification of multiple protein flow dynamics in complex biological systems including the actomyosin cytoskeleton.

3.
Plants (Basel) ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39065415

ABSTRACT

Understanding the ecological and evolutionary aspects of mutualistic interactions is essential for predicting species responses to environmental changes. This study aimed to investigate the phenological patterns and reproductive strategies in two closely related fig tree species, Ficus citrifolia and Ficus eximia. We monitored 99 F. citrifolia and 21 F. eximia trees weekly from January 2006 to April 2011 in an area close to the southern edge of the tropical region in Brazil. Our results revealed contrasting phenological patterns between the two species, with F. citrifolia displaying an annual flowering pattern (1.4 episodes per tree per year) and F. eximia a supra-annual pattern (0.5 episodes per tree per year). We also found significant differences in reproductive strategies, with F. eximia producing more pistillate flowers and, consequently, more seeds and pollinating wasps per fig than F. citrifolia, likely as an adaptation to overcome limitations of low population density by maximizing the gene flow. As the shorter-lived organism, the fig wasp was found to influence critical processes associated with the success and stability of mutualism, such as fig development and ripening. Our findings emphasize the importance of understanding the intricate interactions between mutualistic partners and their adaptive responses to environmental conditions in shaping fig tree populations' reproductive strategies and genetic structure.

4.
Sci Rep ; 14(1): 17332, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068167

ABSTRACT

Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.


Subject(s)
Fertility , Flavonols , Quercetin , Senotherapeutics , Animals , Male , Mice , Fertility/drug effects , Quercetin/pharmacology , Senotherapeutics/pharmacology , Flavonols/pharmacology , Liver/metabolism , Liver/drug effects , Liver/pathology , Cellular Senescence/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Diet, Western/adverse effects , Disease Progression , Choline Deficiency/complications , Mice, Inbred C57BL , Disease Models, Animal
5.
Braz J Psychiatry ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39074074

ABSTRACT

Patient response to antipsychotic drugs varies and may be related to clinical and genetic heterogeneity. This study aimed to determine the performance of clinical, genetic, and hybrid models to predict the response of first episode of psychosis (FEP). patients to the antipsychotic risperidone. We evaluated 141 antipsychotic-naïve FEP patients before and after 10 weeks of risperidone treatment. Patients who had a response rate equal to or higher than 50% on the Positive and Negative Syndrome Scale were considered responders (n = 72; 51%). Analyses were performed using a support vector machine (SVM), k-nearest neighbors (kNN), and random forests (RF). Clinical and genetic (with single-nucleotide variants [SNVs]) models were created separately. Hybrid models (clinical+genetic factors) with and without feature selection were created. Clinical models presented greater balanced accuracy 63.3% (confidence interval [CI] 0.46-0.69) with the SVM algorithm than the genetic models (balanced accuracy: 58.5% [CI 0.41-0.76] - kNN algorithm). The hybrid model, which included duration of untreated psychosis, Clinical Global Impression-Severity scale scores, age, cannabis use, and 406 SNVs, showed the best performance (balanced accuracy: 72.9% [CI 0.62-0.84] - RF algorithm). A hybrid model, including clinical and genetic predictors, can provide enhanced predictions of response to antipsychotic treatment.

6.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000352

ABSTRACT

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Subject(s)
Gene Expression Regulation, Plant , Pinus , Plant Proteins , Pinus/genetics , Pinus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Stems/metabolism , Plant Stems/genetics , Cell Wall/metabolism , Cell Wall/genetics , Gene Expression Profiling , Transcription Factors/metabolism , Transcription Factors/genetics , Lignin/metabolism , Lignin/biosynthesis , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plants, Genetically Modified/genetics
7.
Res Sq ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978575

ABSTRACT

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

8.
Curr Opin Plant Biol ; 81: 102605, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033715

ABSTRACT

Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in Arabidopsis thaliana. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.

9.
Nanoscale ; 16(27): 13211, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38952232

ABSTRACT

Correction for 'Photoluminescence modification of europium(III)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles' by Rodrigo A. Valenzuela-Fernández et al., Nanoscale, 2024, https://doi.org/10.1039/d4nr01526f.

11.
J Chem Theory Comput ; 20(14): 5854-5865, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38984690

ABSTRACT

1,4-dioxane, an emerging water pollutant with high production volumes, is a probable human carcinogen. The inadequacy of conventional treatment processes demonstrates the need for an effective remediation strategy. Crystalline nanoporous materials are cost-effective adsorbents due to their high capacity and selective separation in mixtures. This study explores the potential of all-silica zeolites for the separation of 1,4-dioxane from water. These zeolites are highly hydrophobic and can preferentially adsorb nonpolar molecules from mixtures. We investigated six zeolite frameworks (BEA, EUO, FER, IFR, MFI, and MOR) using Monte Carlo simulations in the Gibbs ensemble. The simulations indicate high selectivity by FER and EUO, especially at low pressures, which we attribute to pore sizes and shapes with a greater affinity to 1,4-dioxane. We also demonstrate a Monte Carlo simulation workflow using gauge cells to model the adsorption of an aqueous solution of 1,4-dioxane at a 0.35 ppb concentration. We quantify 1,4-dioxane and water coadsorption and observe selectivities ranging from 1.1 × 105 in MOR to 8.7 × 106 in FER. We also demonstrate that 1,4-dioxane is in the infinite dilution regime in the aqueous phase at this concentration. This simulation technique can be extended to model other emerging water contaminants such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), chlorofluorocarbons, and others, which are also found in extremely low concentrations.

12.
Acta Trop ; 257: 107321, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972559

ABSTRACT

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.


Subject(s)
Arboviruses , Biodiversity , Culicidae , Mosquito Vectors , Animals , Arboviruses/isolation & purification , Arboviruses/classification , Mexico/epidemiology , Mosquito Vectors/virology , Mosquito Vectors/classification , Culicidae/virology , Culicidae/classification , Agriculture , Aedes/virology , Aedes/classification , Cities , Zika Virus/isolation & purification , Zika Virus/genetics , Ecosystem
13.
Article in English | MEDLINE | ID: mdl-39072699

ABSTRACT

OBJECTIVE: This study systematically reviewed and meta-analyzed the differential attrition and utilization of occupational mental health interventions, specifically examining delivery methods (internet-based versus in-person). METHODS: The research, with papers spanning 2010-2024, involved filtering criteria and comprehensive searches across PubMed, Scopus, and Web of Science Core (PROSPERO registration n. CRD42022322394). Of 28 683 titles, 84 records were included in the systematic review, with 75 in meta-analyses. Risk of bias was assessed through the revised Cochrane risk of bias tool for randomized control trials and funnel plots. Differential attrition across studies was meta-analysed through a random-effects model with limited maximum-likelihood estimation for the degree of heterogeneity. RESULTS: Findings reveal higher mean differential attrition in the intervention group, indicating a potential challenge in maintaining participant engagement. The attrition rates were not significantly influenced by the mode of intervention delivery (internet versus in-person). Compensation for participation and year of publication could potentially influence differential attrition from baseline to follow-up measurements. CONCLUSIONS: These results suggest a need for cautious consideration of attrition in occupational mental health intervention study designs and emphasize the importance of adapting statistical analyses to mitigate potential bias arising from differential attrition.

14.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950037

ABSTRACT

Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.

15.
Ecol Evol ; 14(7): e11634, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026957

ABSTRACT

The major histocompatibility complex (MHC) is a genetic region in jawed vertebrates that contains key genes involved in the immune response. Associations between the MHC and avian malaria infections in wild birds have been observed and mainly explored in the Northern Hemisphere, while a general lack of information remains in the Southern Hemisphere. Here, we investigated the associations between the MHC genes and infections with Plasmodium and Haemoproteus blood parasites along a latitudinal gradient in South America. We sampled 93 rufous-collared sparrows (Zonotrichia capensis) individuals from four countries, Colombia, Ecuador, Peru, and Chile, and estimated MHC-I and MHC-II allele diversity. We detected between 1-4 (MHC-I) and 1-6 (MHC-II) amino acidic alleles per individual, with signs of positive selection. We obtained generalized additive mixed models to explore the associations between MHC-I and MHC-II diversity and latitude. We also explored the relationship between infection status and latitude/biome. We found a non-linear association between the MHC-II amino acidic allele diversity and latitude. Individuals from north Chile presented a lower MHC genetic diversity than those from other locations. We also found an association between deserts and xeric shrublands and a lower prevalence of Haemoproteus parasites. Our results support a lower MHC genetic in arid or semi-arid habitats in the region with the lower prevalence of Haemoproteus parasites.

16.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847490

ABSTRACT

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Subject(s)
Cell Movement , Extracellular Vesicles , Guanine Nucleotide Exchange Factors , Signal Transduction , beta Catenin , rab5 GTP-Binding Proteins , Humans , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , beta Catenin/metabolism , Extracellular Vesicles/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor
17.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38920134

ABSTRACT

Within the framework of natural orbital functional theory, having a convenient representation of the occupation numbers and orbitals becomes critical for the computational performance of the calculations. Recognizing this, we propose an innovative parametrization of the occupation numbers that takes advantage of the electron-pairing approach used in Piris natural orbital functionals through the adoption of the softmax function, a pivotal component in modern deep-learning models. Our approach not only ensures adherence to the N-representability of the first-order reduced density matrix (1RDM) but also significantly enhances the computational efficiency of 1RDM functional theory calculations. The effectiveness of this alternative parameterization approach was assessed using the W4-17-MR molecular set, which demonstrated faster and more robust convergence compared to previous implementations.

18.
Micromachines (Basel) ; 15(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930761

ABSTRACT

3D printing represents an emerging technology in several fields, including engineering, medicine, and chemistry [...].

19.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892324

ABSTRACT

SARS-CoV-2 infection ranges from mild to severe presentations, according to the intensity of the aberrant inflammatory response. Purinergic receptors dually control the inflammatory response: while adenosine A2A receptors (A2ARs) are anti-inflammatory, ATP P2X7 receptors (P2X7Rs) exert pro-inflammatory effects. The aim of this study was to assess if there were differences in allelic and genotypic frequencies of a loss-of-function SNP of ADORA2A (rs2298383) and a gain-of-function single nucleotide polymorphism (SNP) of P2RX7 (rs208294) in the severity of SARS-CoV-2-associated infection. Fifty-five individuals were enrolled and categorized according to the severity of the infection. Endpoint genotyping was performed in blood cells to screen for both SNPs. The TT genotype (vs. CT + CC) and the T allele (vs. C allele) of P2RX7 SNP were found to be associated with more severe forms of COVID-19, whereas the association between ADORA2A SNP and the severity of infection was not significantly different. The T allele of P2RX7 SNP was more frequent in people with more than one comorbidity and with cardiovascular conditions and was associated with colorectal cancer. Our findings suggest a more prominent role of P2X7R rather than of A2AR polymorphisms in SARS-CoV-2 infection, although larger population-based studies should be performed to validate our conclusions.


Subject(s)
COVID-19 , Polymorphism, Single Nucleotide , Receptors, Purinergic P2X7 , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Receptor, Adenosine A2A/genetics , Patient Acuity , COVID-19/complications , COVID-19/genetics , COVID-19/pathology , Genotype , Gene Frequency , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Colonic Neoplasms/complications , Colonic Neoplasms/genetics
20.
Pathogens ; 13(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921738

ABSTRACT

Fasciola hepatica has a complex lifecycle with multiple intermediate and definitive hosts and influenced by environmental factors. The disease causes significant morbidity in children and its prevalent worldwide. There is lack of data about distribution and burden of the disease in endemic regions, owing to poor efficacy of the different diagnostic methods used. A novel PCR-based test was developed by using a portable mini-PCR® platform to detect Fasciola sp. DNA and interpret the results via a fluorescence viewer and smartphone image analyzer application. Human stool, snail tissue, and water samples were used to extract DNA. Primers targeting the ITS-1 of the 18S rDNA gene of Fasciola sp. were used. The limit of detection of the mini-PCR test was 1 fg/µL for DNA samples diluted in water, 10 fg/µL for Fasciola/snail DNA scramble, and 100 fg/µL for Fasciola/stool DNA scramble. The product detection by agarose gel, direct visualization, and image analyses showed the same sensitivity. The Fh mini-PCR had a sensitivity and specificity equivalent to real-time PCR using the same specimens. Testing was also done on infected human stool and snail tissue successfully. These experiments demonstrated that Fh mini-PCR is as sensitive and specific as real time PCR but without the use of expensive equipment and laboratory facilities. Further testing of multiple specimens with natural infection will provide evidence for feasibility of deployment to resource constrained laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...