Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Publication year range
1.
Sci. agric ; 70(3)2013.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1497341

ABSTRACT

Soil CO2 emission (FCO2) is governed by the inherent properties of the soil, such as bulk density (BD). Mapping of FCO2 allows the evaluation and identification of areas with different accumulation potential of carbon. However, FCO2 mapping over larger areas is not feasible due to the period required for evaluation. This study aimed to assess the quality of FCO2 spatial estimates using values of BD as secondary information. FCO2 and BD were evaluated on a regular sampling grid of 60 m × 60 m comprising 141 points, which was established on a sugarcane area. Four scenarios were defined according to the proportion of the number of sampling points of FCO2 to those of BD. For these scenarios, 67 (F67), 87 (F87), 107 (F107) and 127 (F127) FCO2 sampling points were used in addition to 127 BD sampling points used as supplementary information. The use of additional information from the BD provided an increase in the accuracy of the estimates only in the F107, F67 and F87 scenarios, respectively. The F87 scenario, with the approximate ratio between the FCO2 and BD of 1.00:1.50, presented the best relative improvement in the quality of estimates, thereby indicating that the BD should be sampled at a density 1.5 time greater than that applied for the FCO2. This procedure avoided problems related to the high temporal variability associated with FCO2, which enabled the mapping of this variable to be elaborated in large areas.

2.
Sci. agric ; 70(5)2013.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1497362

ABSTRACT

Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

3.
Sci. agric. ; 70(5)2013.
Article in English | VETINDEX | ID: vti-440734

ABSTRACT

Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

4.
Sci. agric. ; 70(3)2013.
Article in English | VETINDEX | ID: vti-440715

ABSTRACT

Soil CO2 emission (FCO2) is governed by the inherent properties of the soil, such as bulk density (BD). Mapping of FCO2 allows the evaluation and identification of areas with different accumulation potential of carbon. However, FCO2 mapping over larger areas is not feasible due to the period required for evaluation. This study aimed to assess the quality of FCO2 spatial estimates using values of BD as secondary information. FCO2 and BD were evaluated on a regular sampling grid of 60 m × 60 m comprising 141 points, which was established on a sugarcane area. Four scenarios were defined according to the proportion of the number of sampling points of FCO2 to those of BD. For these scenarios, 67 (F67), 87 (F87), 107 (F107) and 127 (F127) FCO2 sampling points were used in addition to 127 BD sampling points used as supplementary information. The use of additional information from the BD provided an increase in the accuracy of the estimates only in the F107, F67 and F87 scenarios, respectively. The F87 scenario, with the approximate ratio between the FCO2 and BD of 1.00:1.50, presented the best relative improvement in the quality of estimates, thereby indicating that the BD should be sampled at a density 1.5 time greater than that applied for the FCO2. This procedure avoided problems related to the high temporal variability associated with FCO2, which enabled the mapping of this variable to be elaborated in large areas.

5.
Semina ciênc. agrar ; 30(4): 1017-1034, 2009.
Article in Portuguese | LILACS-Express | VETINDEX | ID: biblio-1498501

ABSTRACT

The irrigation application is one of the most useful techniques in tropical environments, especially during dry seasons. In this study, CO2 efflux, temperature and soil moisture were studied in a field sampled with a grid having 48 points distributed in 35 x 25 m, under irrigation promoted by a sprinkler located at the center of the area, provoking different levels of water deposition, with maximum irrigation levels of 44.4 and 62.2 mm in points closer to the sprinkler. The results show that the emissions, temperature and moisture were strongly affected by the two irrigations events, having a total water level added of 106,6 mm for the points next to the sprinkler and zero for the most distant points from it. The maps of space variation of the variables, as well as the linear correlation between them, indicate that the emissions were positively related to the soil moisture and negative correlated to the soil temperature only after the irrigations events. The special variability models of soil CO2 emission changed from exponential to spherical after the irrigations events. Such results indicate that soil moisture is among possible controlling factors of the soil CO2 emission, because even with reductions in soil temperature provoked by the wetness, emissions increased strongly.


A aplicação de lâminas de irrigação em solos é uma das práticas mais adotadas em ambientes tropicais, especialmente em épocas de seca. Neste trabalho, investigaram-se as emissões de CO2, temperatura e umidade do solo, em 48 pontos distribuídos numa área de 35 x 25 m, afetados por irrigações, promovidas com um aspersor localizado no centro da área, que provocou um molhamento com perfil triangular com lâminas máximas aplicadas de 44,4 e 62,2 mm nos pontos mais próximos do aspersor, Os resultados indicam que as emissões, temperatura e umidade do solo foram fortemente afetadas pelas duas irrigações na área, cuja lâmina total de água somou 106,6 mm para os pontos mais próximos do aspersor e aproximadamente zero para os pontos mais distantes. Os mapas de variação espacial das variáveis, bem como a correlação linear entre elas, indica que as emissões estiveram positivamente relacionadas à umidade do solo e negativamente correlacionadas à temperatura do solo, após os eventos de molhamento da área. Os modelos de variabilidade espacial da emissão de CO2 mudam de exponencial para esféricos logo após os eventos de irrigação. Tais resultados indicam que o fator limitante à emissão de CO2 do solo foi a umidade, pois, a despeito das reduções na temperatura do solo provocadas pelo molhamento, as emissões foram fortemente aumentadas.

6.
Semina Ci. agr. ; 30(4): 1017-1034, 2009.
Article in Portuguese | VETINDEX | ID: vti-471198

ABSTRACT

The irrigation application is one of the most useful techniques in tropical environments, especially during dry seasons. In this study, CO2 efflux, temperature and soil moisture were studied in a field sampled with a grid having 48 points distributed in 35 x 25 m, under irrigation promoted by a sprinkler located at the center of the area, provoking different levels of water deposition, with maximum irrigation levels of 44.4 and 62.2 mm in points closer to the sprinkler. The results show that the emissions, temperature and moisture were strongly affected by the two irrigations events, having a total water level added of 106,6 mm for the points next to the sprinkler and zero for the most distant points from it. The maps of space variation of the variables, as well as the linear correlation between them, indicate that the emissions were positively related to the soil moisture and negative correlated to the soil temperature only after the irrigations events. The special variability models of soil CO2 emission changed from exponential to spherical after the irrigations events. Such results indicate that soil moisture is among possible controlling factors of the soil CO2 emission, because even with reductions in soil temperature provoked by the wetness, emissions increased strongly.


A aplicação de lâminas de irrigação em solos é uma das práticas mais adotadas em ambientes tropicais, especialmente em épocas de seca. Neste trabalho, investigaram-se as emissões de CO2, temperatura e umidade do solo, em 48 pontos distribuídos numa área de 35 x 25 m, afetados por irrigações, promovidas com um aspersor localizado no centro da área, que provocou um molhamento com perfil triangular com lâminas máximas aplicadas de 44,4 e 62,2 mm nos pontos mais próximos do aspersor, Os resultados indicam que as emissões, temperatura e umidade do solo foram fortemente afetadas pelas duas irrigações na área, cuja lâmina total de água somou 106,6 mm para os pontos mais próximos do aspersor e aproximadamente zero para os pontos mais distantes. Os mapas de variação espacial das variáveis, bem como a correlação linear entre elas, indica que as emissões estiveram positivamente relacionadas à umidade do solo e negativamente correlacionadas à temperatura do solo, após os eventos de molhamento da área. Os modelos de variabilidade espacial da emissão de CO2 mudam de exponencial para esféricos logo após os eventos de irrigação. Tais resultados indicam que o fator limitante à emissão de CO2 do solo foi a umidade, pois, a despeito das reduções na temperatura do solo provocadas pelo molhamento, as emissões foram fortemente aumentadas.

SELECTION OF CITATIONS
SEARCH DETAIL