Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Type of study
Language
Publication year range
1.
Semin Cancer Biol ; 86(Pt 3): 583-589, 2022 11.
Article in English | MEDLINE | ID: mdl-34087416

ABSTRACT

The persistent infection of high-risk Human papillomavirus (HR-HPV) induced cervical cancer remains a challenge in women worldwide including India. Recent advances in cancer research have paved the way for advanced cancer treatment modalities including immunotherapy by manipulating the function or number of cytotoxic T cells. It is well established that anaphylatoxins like C3a and C5a of complement system influence tumor growth by evading apoptosis leading to progression of cancer. The role of the complement system, particularly the complement regulatory proteins (CRPs) which are important determinants of immune response play a crucial role in carcinogenesis. In a tumor microenvironment (TME) assisted suppression of immune effector cells may be achieved through CRPs. However, recent advances in pharmacogenomics including drug designing and combination of these approaches have provided a holistic understanding of signaling pathways and their crosstalk, to regulate cellular communications.This review describes the role of complement system; particularly CRPs in HPV induced cervical carcinogenesis which may be used for designing anti- HPV or cervical cancer therapeutics.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/etiology , Uterine Cervical Neoplasms/therapy , Papillomavirus Infections/complications , Papillomavirus Infections/therapy , Carcinogenesis , Immunotherapy , Tumor Microenvironment
2.
Biointerface Res Appl Chem, v. 11, n. 6, p. 14764-14774, mar. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3765

ABSTRACT

Biological silver nanoparticles (AgNPs) were synthesized using the marine endophytic fungus Aspergillus tubingensis and inhibited Bacillus subtilis biofilm formation at low concentrations. Cotton and polyester fabrics impregnated with AgNPs were analyzed by transmission electron microscopy (TEM), and the concentration of AgNPs in both fabrics was determined using inductivelycoupled plasma atomic emission spectrometry (ICP-AES). The fabrics carrying the AgNPs inhibited the Staphylococcus aureus and Escherichia coli growth by 100%. Both fabrics impregnated one time with AgNPs inhibited yeasts' clinical species' growth, Candida albicans, Candida glabrata, and Candida parapsilosis, from 80.1% to approximately 98.0%. Besides the anti-biofilm effect, the AgNPs impregnation process on cotton and polyester fabrics was highly efficient, and both fabrics presented antimicrobial effects against clinically relevant bacteria and yeast species. The results evidence that functionalized textiles containing these biological AgNPs can play an essential role in combating pathogenic microorganisms. Thereby offering an alternative to design effective solutions, mainly for hospital garments and biomedical devices, to avoid microorganisms transmissions and hospitalacquired nosocomial infections.

3.
Biomed Microdevices ; 21(3): 56, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222509

ABSTRACT

Biogenic silver nanoparticles (AgNPs) were obtained throughout the fungal biosynthesis using extracellular filtrate of the epiphytic fungus B. ochroleuca and were incorporated in cotton and polyester fabrics by common impregnation procedure that was repeated once, twice or four times. Both fabrics were analyzed by scanning electron microscopy (SEM), and the effectiveness of impregnation was determined using inductively coupled plasma optical emission spectrometry (ICP OES). The AgNPs loaded fabrics showed potent antimicrobial activity on Staphylococcus aureus and Escherichia coli as well as on clinically relevant Candida albicans, Candida glabrata, and Candida parapsilosis, indicating that the AgNPs impregnation of cotton and polyester fabrics was efficient. AgNPs effectively inhibited the biofilm formation by Pseudomonas aeruginosa and was not toxic to Galleria mellonella larvae indicating a promising probability of biotechnological application.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hypocreales/metabolism , Metal Nanoparticles , Silver/chemistry , Silver/pharmacology , Textiles , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Biofilms/growth & development , Larva/drug effects , Lepidoptera/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Silver/metabolism , Silver/toxicity
4.
Biomed microdevices, v. 21, n. 3, 56, jun. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2773

ABSTRACT

Biogenic silver nanoparticles (AgNPs) were obtained throughout the fungal biosynthesis using extracellular filtrate of the epiphytic fungus B. ochroleuca and were incorporated in cotton and polyester fabrics by common impregnation procedure that was repeated once, twice or four times. Both fabrics were analyzed by scanning electron microscopy (SEM), and the effectiveness of impregnation was determined using inductively coupled plasma optical emission spectrometry (ICP OES). The AgNPs loaded fabrics showed potent antimicrobial activity on Staphylococcus aureus and Escherichia coli as well as on clinically relevant Candida albicans, Candida glabrata, and Candida parapsilosis, indicating that the AgNPs impregnation of cotton and polyester fabrics was efficient. AgNPs effectively inhibited the biofilm formation by Pseudomonas aeruginosa and was not toxic to Galleria mellonella larvae indicating a promising probability of biotechnological application.

5.
Biomed. microdevices ; 21(3): 56, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16049

ABSTRACT

Biogenic silver nanoparticles (AgNPs) were obtained throughout the fungal biosynthesis using extracellular filtrate of the epiphytic fungus B. ochroleuca and were incorporated in cotton and polyester fabrics by common impregnation procedure that was repeated once, twice or four times. Both fabrics were analyzed by scanning electron microscopy (SEM), and the effectiveness of impregnation was determined using inductively coupled plasma optical emission spectrometry (ICP OES). The AgNPs loaded fabrics showed potent antimicrobial activity on Staphylococcus aureus and Escherichia coli as well as on clinically relevant Candida albicans, Candida glabrata, and Candida parapsilosis, indicating that the AgNPs impregnation of cotton and polyester fabrics was efficient. AgNPs effectively inhibited the biofilm formation by Pseudomonas aeruginosa and was not toxic to Galleria mellonella larvae indicating a promising probability of biotechnological application.

SELECTION OF CITATIONS
SEARCH DETAIL
...